【题解】

  我们可以发现不在最小生成树上的边一定不能多次经过,因为一条不在最小生成树上的边(u,v)的边权比最小生成树上(u,v)之间的路径更长,选择不在最小生成树上的边一定不划算。

  我们还需要确定最小生成树上哪些边需要经过两次。我们发现如果某个点当前的度为奇数,这个点到它的父亲的边要经过两次,所以我们在它和它父亲之间多连上一条边(即把他们的度都加1).

  这样一次dfs我们就可以从下往上确定出需要经过两次的边。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
#define N 500010
#define rg register
using namespace std;
const int Mod=;
int n,m,tot,cnt,last[N],in[N],fa[N];
LL ans,Pow[N];
struct edge{int to,pre,dis;}e[N<<];
struct rec{int u,v;}r[N];
inline int read(){
int k=,f=; char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(''<=c&&c<='')k=k*+c-'',c=getchar();
return k*f;
}
void dfs(int x,int f,int eg){
for(rg int i=last[x],to;i;i=e[i].pre)if((to=e[i].to)!=f) dfs(to,x,i);
if((in[x]&)&&x!=) ans=(ans+Pow[e[eg].dis])%Mod,in[f]++;
}
int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main(){
n=read(); m=read(); Pow[]=;
for(rg int i=;i<=m;i++){
Pow[i]=(Pow[i-]<<)%Mod; ans=(ans+Pow[i])%Mod;
in[r[i].u=read()]++; in[r[i].v=read()]++;
}
for(rg int i=;i<=n;i++) fa[i]=i;
for(rg int i=;i<=m;i++){
int u=r[i].u,v=r[i].v;
if(find(u)!=find(v)){
e[++tot]=(edge){u,last[v],i}; last[v]=tot;
e[++tot]=(edge){v,last[u],i}; last[u]=tot;
fa[find(u)]=find(v);
cnt++; if(cnt==n-) break;
}
}
dfs(,,);
printf("%lld\n",ans);
return ;
}

牛客网NOIP赛前集训营 提高组 第5场 T2 旅游的更多相关文章

  1. 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告

    目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...

  2. 牛客网NOIP赛前集训营-提高组(第二场)A 方差

    链接:https://www.nowcoder.com/acm/contest/173/A来源:牛客网 题目描述 一个长度为 m 的序列 b[1...m] ,我们定义它的方差为 ,其中  表示序列的平 ...

  3. [牛客网NOIP赛前集训营-提高组(第一场)]C.保护

    链接:https://www.nowcoder.com/acm/contest/172/C来源:牛客网 题目描述 C国有n个城市,城市间通过一个树形结构形成一个连通图.城市编号为1到n,其中1号城市为 ...

  4. 牛客网NOIP赛前集训营-提高组(第一场)

    牛客的这场比赛感觉真心不错!! 打得还是很过瘾的.水平也比较适合. T1:中位数: 题目描述 小N得到了一个非常神奇的序列A.这个序列长度为N,下标从1开始.A的一个子区间对应一个序列,可以由数对[l ...

  5. 比赛总结——牛客网 NOIP赛前集训营提高组模拟第一场

    第一场打的很惨淡啊 t1二分+前缀最小值没想出来,20分的暴力也挂了,只有10分 t2数位dp,调了半天,结果因为忘了判0的特殊情况WA了一个点,亏死 t3emmmm.. 不会 imone说是DSU ...

  6. 牛客网NOIP赛前集训营-提高组(第一场)B 数数字

    数数字 思路: 数位dp 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...

  7. 牛客网NOIP赛前集训营-提高组(第一场)A 中位数

    中位数 思路: 二分答案 代码: #pragma GCC optimize(2) #pragma GCC optimize(3) #pragma GCC optimize(4) #include< ...

  8. 牛客网NOIP赛前集训营-提高组(第四场)游记

    牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...

  9. 牛客网NOIP赛前集训营-提高组(第四场)B区间

    牛客网NOIP赛前集训营-提高组(第四场)B区间 题目描述 给出一个序列$ a_1  \dots   a_n$. 定义一个区间 \([l,r]\) 是好的,当且仅当这个区间中存在一个 \(i\),使得 ...

随机推荐

  1. openstack dnsmasq

    killall dnsmasq systemctl restart openstack-nova-compute /sbin/dnsmasq --conf-file=/var/lib/libvirt/ ...

  2. 18. 视图Ext.Viewport和窗口Ext.Window用法

    转自:http://www.cnblogs.com/linjiqin/archive/2011/06/22/2087003.html 视图Ext.Viewport和窗口Ext.Window用法. 1. ...

  3. Flink源码阅读(1.7.2)

    目录 Client提交任务 flink的图结构 StreamGraph OptimizedPlan JobGraph ExecutionGraph flink部署与执行模型 Single Job Jo ...

  4. Rails 插入代码与注释

    醉了醉了,在原来那个表格最后加了然后更新博客,然后最后写的内容就没了.来来回回试了n次都一样.不得已新开一个    插入代码  <% ... %>  打印值  <%= ... %&g ...

  5. [转]c++中的string常用函数用法总结

    标准c++中string类函数介绍 注意不是CString之所以抛弃char*的字符串而选用C++标准程序库中的string类,是因为他和前者比较起来,不必 担心内存是否足够.字符串长度等等,而且作为 ...

  6. python程序展现图片

    突然想写一个python程序能够显示图片的 ,展示文字的已经实现了 现在就搞一搞这个吧 相信也是很简单 首先是放一张图片在e盘下面 等会程序打包的时候将会用到 就决定是你啦 皮卡丘: 然后就写代码吧:

  7. nginx connect failed (110- Connection timed out) 问题排查

    首先排查 ping 下 nginx 与代理服务是否ping 的通,带端口的,telnet 下端口号是否是通的,本次遇到问题为 telnet 发现有台服务器不通,原因是端口未开放

  8. scla-基础-函数-元组(0)

    //元组 class Demo2 extends TestCase { def test_create_^^(){ val yuana = (1,true,1.2,"c",&quo ...

  9. ionic3带参数返回原来页面

    最近用ionic3+angular4做项目.我遇到了个问题,我返回原来页面时一般都会调用this.navCtrl.pop()方法,但这个方法不能携带参数.怎么办? 可以写个回调方法. 我在a页面定义个 ...

  10. AI:IPPR的数学表示-CNN稀疏结构进化(Mobile、xception、Shuffle、SE、Dilated、Deformable)

    接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言 ...