POJ 2104 K-th Number(区间第k大数)(平方切割,归并树,划分树)
题目链接:
id=2104
解题思路:
由于查询的个数m非常大。朴素的求法无法在规定时间内求解。
因此应该选用合理的方式维护数据来做到高效地查询。
假设x是第k个数,那么一定有
(1)在区间中不超过x的数不少于k个
(2)在区间中小于x的数有不到k个
因此。假设能够高速求出区间里不超过x的数的个数。就能够通过对x进行二分搜索来求出第k个数是多少。
接下来,我们来看一下怎样计算在某个区间里不超过x个数的个数。
假设不进行预处理,那么就仅仅能遍历一遍全部元素。
还有一方面,假设区间是有序的。那么就能够通过二分搜索法高效地求出不超过x的数的个数了。可是,假设对于每一个查询都分别做一次排序,就全然无法减少复杂度。所以,能够考虑使用平方切割和线段树进行求解。
1.平方切割
首先我们来看看怎样使用平方切割来解决问题。
把数列每b个一组分到各个桶里。每个桶内保存有排序后的数列。这样。假设要求在某个区间中不超过x的数的个数。就能够这样求得。
(1)对于全然包括在区间内的桶。用二分搜索法计算。
(2)对于全部的桶不全然包括在区间内的元素,逐个检查。
假设把b设为sqrt(b),复杂度就变成了
O((n/b)logb + b) = O(sqrt(n)logn)
当中。对每一个元素的处理仅仅要O(1)时间,而对于每一个桶的处理则须要O(logb),所以比起让桶的数量和桶内元素的个数尽可能接近。我们更应该把桶的数量设置成比桶内元素个数略少一些,这样能够使得程序更加高效。假设把b设为sqrt(nlogn)。复杂度就变成
O((n/b)logb + b) = O(sqrt(nlogn))
接下来仅仅须要对x进行二分搜索就能够了。
由于答案一定时数列a里的某个元素,所以二分搜索须要运行O(logn)次。因此。假设b = sqrt(nlogn),包含预处理在内整个算法的复杂度就是O(nlogn + msqrt(n)log1.5次方(n))
AC代码:
#include <iostream>
#include <cstdio>
#include <vector>
#include <algorithm>
using namespace std; const int B = 1000;//桶的大小
const int N = 100005;
const int M = 5005;
//输入
int n,m;
int a[N];
int L[M],R[M],K[M]; int nums[N];//对A排序之后的结果
vector<int> bucket[N/B];//每个桶排序之后的结果 void solve(){
for(int i = 0; i < n; i++){
bucket[i/B].push_back(a[i]);
nums[i] = a[i];
}
sort(nums,nums+n);
//尽管每B个一组剩下的部分所在的桶没有排序。可是不会产生问题
for(int i = 0; i < n/B; i++)
sort(bucket[i].begin(),bucket[i].end());
for(int i = 0; i < m; i++){
//求[l,r]区间中第k个数
int l = L[i]-1,r = R[i],k = K[i]; int lb = -1,ub = n-1;
while(ub-lb > 1){
int mid = (lb+ub)/2;
int x = nums[mid];
int tl = l,tr = r,c = 0; //区间两端多出的部分
while(tl < tr && tl % B != 0)
if(a[tl++] <= x)
c++;
while(tl < tr && tr % B != 0)
if(a[--tr] <= x)
c++; //对每个桶进行计算
while(tl < tr){
int b = tl/B;
c += upper_bound(bucket[b].begin(),bucket[b].end(),x)-bucket[b].begin();
tl += B;
} if(c >= k)
ub = mid;
else
lb = mid;
}
printf("%d\n",nums[ub]);
}
} int main(){
while(~scanf("%d%d",&n,&m)){
for(int i = 0; i < n; i++)
scanf("%d",&a[i]);
for(int i = 0; i < m; i++)
scanf("%d%d%d",&L[i],&R[i],&K[i]);
solve();
}
return 0;
}
2.归并树
以下我们考虑一下怎样使用线段树解决问题。我们把数列用线段树维护起来。
线段树的每一个节点都保存了相应区间排好序后的结果。曾经我们接触过的线段树节点上保存的都是数值,而这次则有所不同。每一个节点保存了一个数列。
建立线段树的过程和归并排序类似,而每一个节点的数列就是其两个儿子节点的数列合并后的结点。建树的复杂度是O(nlogn)。顺带一提,这颗线段树正是归并排序的完总体现。
(归并树)。
要计算在某个区间中不超过x的数的个数,仅仅须要递归地进行例如以下操作就能够了。
(1)假设所给的区间和当前节点的区间全然没有交集。那么返回0个。
(2)假设所给的区间全然包括了当前节点相应的区间。那么使用二分搜索法对该节点上保存的数组进行查找。
(3)否则对两个儿子递归地进行计算之后求和就可以。
因为对于同一深度的节点最多仅仅訪问常数个,因此能够在O(log二次方n)时间里求出不超过x的数的个数。所以整个算法的复杂度是O(nlogn + mlog三次方(n))。
归并树
以1 5 2 6 3 7为例:
把归并排序递归过程记录下来即是一棵归并树:
[1 2 3 5 6 7]
[1 2 5] [3 6 7]
[1 5] [2] [6 3] [7]
[1][5] [6][3]
用相应的下标区间建线段树:(这里下标区间相应的是原数列)
[1 6]
[1 3] [4 6]
[1 2] [3] [4 5][6]
[1][2] [4][5]
每次查找[l r]区间的第k大数时,在[1 2 3 4 5 6 7]这个有序的序列中二分所要找的数x,然后相应到线段树中去找[l r]中比x小的数有几个,即x的rank。由
于线段树中随意区间相应到归并树中是有序的,所以在线段树中的某个区间查找比x小的数的个数也能够用二分在相应的归并树中找。这样一次查询的
时间复杂度是log(n)^2。
要注意的是,多个x有同样的rank时,应该取最大的一个。
AC代码:
#include <iostream>
#include <cstdio>
using namespace std; const int N = 100005;
struct node{
int l,r;
}tree[N<<2];
int n,q;
int a[N],mer[20][N]; void build(int m,int l,int r,int deep){
tree[m].l = l;
tree[m].r = r;
if(l == r){
mer[deep][l] = num[l];
return;
}
int mid = (l+r)>>1;
build(m<<1,l,mid,deep+1);
build(m<<1|1,mid+1,r,deep+1);
//归并排序,在建树的时候保存
int i = l,j = (l+r)/2+1,p = 1;
while(i <= (l+r)/2 && j <= r){
if(mer[deep+1][i] > mer[deep+1][j])
mer[deep][p++] = mer[deep+1][j++];
else
mer[deep][p++] = mer[deep+1][i++];
}
while(i <= (l+r)/2)
mer[deep][p++] = mer[deep+1][i++];
while(j <= r)
mer[deep][p++] = mer[deep+1][j++];
} int query(int m,int l,int r,int deep,int key){
if(tree[step].r < l || tree[m].l > r)
return 0;
if(tree[m].l >= l && tree[m].r <= r)
//找到key在排序后的数组中的位置
return lower_bound(&mer[deep][tree[m].l],&mer[deep][tree[m].r+1,key) - &mer[deep][tree[m].l];
return query(m<<1,l,r,deep+1,key)+query(m<<1|1,l,r,key);
} int solve(int l,int r,int k){
int low = 1,high = n,mid;
while(low < high){
mid = (low+high+1)>>1;
int cnt = query(1,l,r,1,mer[1][mid]);
if(cnt <= k)
low = mid;
else
high = mid-1;
}
return mer[1][low];
} int main(){
while(~scanf("%d%d",&n,&q)){
for(int i = 1; i <= n; i++)
scanf("%d",&a[i]);
build(1,1,n,1);
while(q--){
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",solve(l,r,k-1));
}
}
return 0;
}
3.划分树
事实上。归并树是在建树的过程中保存归并排序,划分树是在建树的过程中保存高速排序。
划分树
相同以1 5 2 6 3 7为例:
依据中位数mid。将区间划分成左子树中的数小于等于mid。右子树中的数大于等于mid。得到这样一棵划分树:
[1 5 2 6 3 7]
[1 2 3] [5 6 7]
[1 2] [3] [5 6] [7]
[1] [2] [5] [6]
注意要保持下标的先后顺序不变
对每个区间。用sum[i]记录区间的左端点left到i有几个进入了左子树,即有几个数小于等于mid
用相应的下标区间建线段树:(这里下标区间相应的是排序后的数列)
[1 6]
[1 3] [4 6]
[1 2] [3] [4 5][6]
[1][2] [4][5]
每次查找[l r]区间的第k大数时。先查看当前区间[left right]下的sum[r] - sum[l - 1]是否小于等于k,假设是,则递归到左子树,并继续在[left + sum[l - 1],
left + sum[r] - 1]中找第k大数。否则,进入右子树,继续在[mid + l - left + 1 - sum[l - 1], mid + r - left + 1 - sum[r]]找第k - sum[r] + sum[l - 1]大数,这样
一次查询仅仅要logn的复杂度
AC代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; const int N = 100005;
struct node{
int l,r,mid;
}tree[N<<2];
int sa[N],num[20][N],cnt[20][N];//sa中是排序后的,num记录每一层的排序结果。cnt[deep][i]表示第deep层。前i个数中有多少个进入左子树
int n,q;
void debug(int d){
for(int i = 1; i <= n; i++)
printf("%d ",num[d][i]);
printf("\n");
} void build(int m,int l,int r,int deep){
tree[m].l = l;
tree[m].r = r;
if(l == r)
return ;
int mid = (l+r)>>1;
int mid_val = sa[mid],lsum = mid-l+1;
for(int i = l; i <= r; i++)
if(num[deep][i] < mid_val)
lsum--;//lsum表示左子树中还须要多少个中值
int L = l,R = mid+1;
for(int i = l; i <= r; i++){
if(i == l)
cnt[deep][i] = 0;
else
cnt[deep][i] = cnt[deep][i-1];
if(num[deep][i] < mid_val || (num[deep][i] == mid_val && lsum > 0)){
//左子树
num[deep+1][L++] = num[deep][i];
cnt[deep][i]++;
if(num[deep][i] == mid_val)
lsum--;
}
else
num[deep+1][R++] = num[deep][i];
}
//debug(deep);
build(m<<1,l,mid,deep+1);
build(m<<1|1,mid+1,r,deep+1);
} int query(int m,int l,int r,int deep,int k){
if(l == r)
return num[deep][l];
int s1,s2;//s1为[tree[step].left,l-1]中分到左子树的个数
if(tree[m].l == l)
s1 = 0;
else
s1 = cnt[deep][l-1];
s2 = cnt[deep][r]-s1;//s2为[l,r]中分到左子树的个数
if(k <= s2)//左子树的数量大于k,递归左子树
return query(m<<1,tree[m].l+s1,tree[m].l+s1+s2-1,deep+1,k);
int b1 = l-1-tree[m].l+1-s1;//b1为[tree[m].l,l-1]中分到右子树的个数
int b2 = r-l+1-s2; //b2为[l,r]中分到右子树的个数
int mid = (tree[m].l+tree[m].r)>>1;
return query(m<<1|1,mid+1+b1,mid+1+b1+b2-1,deep+1,k-s2);
} int main(){
while(~scanf("%d%d",&n,&q)){
for(int i = 1; i <= n; i++){
scanf("%d",&num[1][i]);
sa[i] = num[1][i];
}
sort(sa+1,sa+n+1);
build(1,1,n,1);
while(q--){
int l,r,k;
scanf("%d%d%d",&l,&r,&k);
printf("%d\n",query(1,l,r,1,k));
}
}
return 0;
}
POJ 2104 K-th Number(区间第k大数)(平方切割,归并树,划分树)的更多相关文章
- POJ 2014.K-th Number 区间第k小 (归并树)
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 57543 Accepted: 19893 Ca ...
- HDU 2665.Kth number 区间第K小
Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- POJ2104 K-th Number —— 区间第k小 整体二分
题目链接:https://vjudge.net/problem/POJ-2104 K-th Number Time Limit: 20000MS Memory Limit: 65536K Tota ...
- POJ 2104:K-th Number(整体二分)
http://poj.org/problem?id=2104 题意:给出n个数和m个询问求区间第K小. 思路:以前用主席树做过,这次学整体二分来做.整体二分在yr大佬的指点下,终于大概懂了点了.对于二 ...
- poj2104&&poj2761 (主席树&&划分树)主席树静态区间第k大模板
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 43315 Accepted: 14296 Ca ...
- POJ 2104:K-th Number 整体二分
感觉整体二分是个很有趣的东西. 在别人的博客上看到一句话 对于二分能够解决的询问,如果有多个,那么如果支持离线处理的话,那么就可以使用整体二分了 树套树写了一天还是WA着,调得焦头烂额,所以决定学cd ...
- POJ 题目2761 Feed the dogs(主席树||划分树)
Feed the dogs Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 16860 Accepted: 5273 De ...
- POJ 2104:K-th Number(主席树静态区间k大)
题目大意:对于一个序列,每次询问区间[l,r]的第k大树. 分析: 主席树模板题 program kthtree; type point=record l,r,s:longint; end; var ...
- POJ-2104-K-th Number(区间第K大+主席树模板题)
Description You are working for Macrohard company in data structures department. After failing your ...
随机推荐
- STL内存分配方式
关于STL用的很多比如map, vector, set, queue, stack等等.很少关注它的内存分配情况,但是经常遇到比如使用map,不停的在map中插入了一些很小的对象,然后释放了一些,然后 ...
- Mybatis的Dao向mapper传多个参数(三种解决方案)转自《super超人》
第一种方案 : DAO层的函数方法 Public User selectUser(String name,String area); 对应的Mapper.xml <select id=" ...
- [ GDOI 2014 ] 拯救莫莉斯
\(\\\) \(Description\) 有一个 \(N\times M\) 的网格,每个格点都有权值,图是四连通的. 现在选择一个点集,使得每个格点要么被选中,要么连通的点之一被选中. 求这个点 ...
- FCC 基础JavaScript 练习2
1. 引号不是字符串中唯一的可以被转义字符.下面是常见的转义序列列表: \' 单引号 \" 双引号 \\ 反斜杠符 \n 换行符 \r 回车符 \t 制表符 \b 退格符 \f 换页符 ...
- Appium环境部署
Appium 是一个开源.跨平台的自动化测试工具,用于测试原生和轻量移动应用,支持 iOS, Android平台. 需要部署的软件:python环境.nodejs..net framework4.5. ...
- CentOS7上安装稻壳CMS
CentOS7上安装稻壳CMS 1, 安装用途 为了给某公司建设一个小型网站,租用了一个阿里云ECS服务器,最基础的硬件配置,因此选择了CentOS7操作系统. 稻壳CMS(docCMS)源于深喉咙C ...
- HTML5——移动端的点击、拖拽
移动端浏览器不支持mouse事件 https://www.cnblogs.com/joyco773/p/6519668.html https://www.cnblogs.com/yjhua/p/525 ...
- vue学习图解
vue2.0版本的学习图解个人心得!本文为原创禁止转载!!转载需要注明出处,谢谢合作!!!
- Windows sever 2003 IIS6.0 搭建DVWA
DVWA 环境: Windows Sever 2003 IIS 6.0+MYSQL+PHP5.4+FASFCGI 详细教程: http://files.cnblogs.com/files/yyx001 ...
- Windows提高_2.3第三部分:内核区同步
第三部分:内核区同步 等待函数(WaitForObject) 等待函数的形式 单个:WaitForSingleObject 多个:WaitForMultipleObjects 一个可以被等待的对象通常 ...