BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数

Description

  大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。现在,请你帮助沙拉公主解决这个问题,由于可能张数非常大,你只需计算出对R取模后的答案即可。R是一个质数。

Input

第一行为两个整数T,R。R<=10^9+10,T<=10000,表示该组中测试数据数目,R为模后面T行,每行一对整数N,M,见题目描述 m<=n

Output

共T行,对于每一对N,M,输出1至N!中与M!素质的数的数量对R取模后的值

Sample Input

1 11
4 2

Sample Output

1
数据范围:
对于100%的数据,1 < = N , M < = 10000000


如果gcd(i,n)=1,那么gcd(i+n,1)=1。

于是答案=$\varphi (m!)*(n!)/(m!)$

=$\varphi(m!)/(m!) *(n!)$

于是前面那个设为f[m],这个可以线筛出来,同时推出逆元。

f[m]其实就是m以内所有的质数(p-1)/p乘起来,预处理即可。

代码:

#include <stdio.h>
#define LL long long
int prim[5000001],n,m,t,p,env[10000001],fac[10000001],f[10000001],cnt;
bool vis[10000001];
int main()
{
scanf("%d%d",&t,&p);
env[1]=1;
fac[0]=fac[1]=1;
f[1]=1;
for(int i=2;i<=10000000;i++)
{
if(i<=p)
env[i]=(p-p/i)*1ll*env[p%i]%p;
else
env[i]=env[i-p];
if(!vis[i])
{
if(env[i]%p!=0)
f[i]=1ll*f[i-1]*env[i]%p*(i-1)%p;
else
{
f[i]=1ll*f[i-1]*(i-1)%p;
}
prim[cnt++]=i;
}
else f[i]=f[i-1];
for(int j=0;j<cnt&&i*prim[j]<=10000000;j++)
{
vis[i*prim[j]]=1;
if(i%prim[j]==0)break;
}
if(i%p!=0)fac[i]=1ll*fac[i-1]*i%p;
else
{
int num=i;
while(num%p==0)num/=p;
fac[i]=fac[i-1]*num%p;
}
}
while(t--)
{
scanf("%d%d",&n,&m);
if(n>=p*2||(n>=p&&m<p))
{printf("0\n");continue;}
printf("%lld\n",1ll*f[m]*fac[n]%p);
}
}

BZOJ_2186_[Sdoi2008]沙拉公主的困惑_欧拉函数的更多相关文章

  1. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  2. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  3. bzoj 2186 [Sdoi2008]沙拉公主的困惑(欧拉函数,逆元)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2186 [题意] 若干个询问,求1..n!中与m!互质的个数. [思路] 首先有gcd( ...

  4. [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】

    题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...

  5. [bzoj2186][Sdoi2008]沙拉公主的困惑_数论

    沙拉公主的困惑 bzoj-2186 Sdoi-2008 题目大意:求N!中与M!互质的数的个数. 注释:$1\le N,M\le 10^7$. 想法:显然是求$\phi(M!)$.这东西其实只需要将数 ...

  6. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  7. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  8. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  9. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

随机推荐

  1. P1111 修复公路 洛谷

    https://www.luogu.org/problem/show?pid=1111 题目背景 A地区在地震过后,连接所有村庄的公路都造成了损坏而无法通车.政府派人修复这些公路. 题目描述 给出A地 ...

  2. cut printf awk sed grep笔记

    名称 作用 参数 实例 cut 截取某列,可指定分隔 -f 列号 -d 分隔符 cut -d ":" -f 1, 3 /etc/passwd 截取第一列和第三列 printf pr ...

  3. Weblogic调优

    优化说明: 一.Weblogic服务程序设置: 1.设置JDK内存: 修改weblogic\user_projects\domains\base_domain\bin下的setDomainEnv.cm ...

  4. 实践与理解CMM体系

    我的项目管理之路--5.实践与理解CMM体系   分类: 管理专辑(65) 过程改进(9) 软件工程(52) 版权声明:本文为博主原创文章,未经博主允许不得转载. 一个现代企业我们可以把它比作为自然界 ...

  5. centos的python2.6.x升级到python2.7.x方法;python2.6.x的版本就不要用了

    python2.6.x的版本,现在使用的很多插件都不支持了.所以如果你的centos还是使用的2.6.x版本,不要犹豫,赶紧升级到2.7.x版本 1.所谓升级,就是再安装一个python2.7.x版本 ...

  6. Java面试题集(151-180)

    摘要:这部分包括了Spring.Spring MVC以及Spring和其它框架整合以及測试相关的内容,除此之外还包括了大型站点技术架构相关面试内容. 151. Spring中的BeanFactory和 ...

  7. 将一个文件从gbk编码转换为utf8编码

    用django展示模板时,出现如下错误: 'utf8' codec can't decode byte 0xd3 in position 197: invalid continuation byte ...

  8. [转]文件IO详解(二)---文件描述符(fd)和inode号的关系

    原文:https://www.cnblogs.com/frank-yxs/p/5925563.html 文件IO详解(二)---文件描述符(fd)和inode号的关系 ---------------- ...

  9. mysql 复制数据库

    为了方便快速复制一个数据库,可以用以下命令 将db1数据库的数据以及表结构复制到newdb数据库 创建新的数据库 #mysql -u root -p123456 mysql>CREATE DAT ...

  10. 一个TAB的jquery简单写法2

    <style> .honver{ color:red;} </style><script src="jquery-1.9.0.min.js">& ...