bzoj 2565: 最长双回文串【manacher+线段树】
因为我很愚蠢所以用了很愚蠢的O(nlogn)的manacher+线段树做法
就是开两个线段树mn和mx分别表示左端点在i的最长回文子串和右端点在i的最长回文子串
用manacher求出每个点的最长回文子串,然后对于一组(i,f[i])(这里的i是加完#之后的串),我们考虑对原串贡献是对于中点右边一段回文串上点x的mn贡献i-2x+1,x最后加就变成在线段树上贡献i+1,然后同理对左边一段贡献2x-i+1,在线段树上贡献-i+1,注意这里要分一下奇偶还有仔细算一下边界
然后枚举断点,在线段树上查,取max即可
实际上注意到是可以O(n)的,mnmx更新时候的范围超过之后就变成负的没有意义了,所以直接更新区间端点,最后把i%2相同的向前/向后更新一下即可
或者直接用回文自动机预处理
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=200005;
int n,f[N],ans;
char c[N],s[N];
struct xds
{
int l,r,mx,lz;
}t[N<<2];
struct wk
{
xds t[N<<2];
void build(int ro,int l,int r)
{
t[ro].l=l,t[ro].r=r,t[ro].lz=t[ro].mx=-1e9;
if(l==r)
return;
int mid=(l+r)>>1;
build(ro<<1,l,mid);
build(ro<<1|1,mid+1,r);
}
void pd(int ro)
{
if(t[ro].lz!=-1e9)
{
t[ro<<1].mx=max(t[ro<<1].mx,t[ro].lz);
t[ro<<1].lz=max(t[ro<<1].lz,t[ro].lz);
t[ro<<1|1].mx=max(t[ro<<1|1].mx,t[ro].lz);
t[ro<<1|1].lz=max(t[ro<<1|1].lz,t[ro].lz);
t[ro].lz=-1e9;
}
}
void update(int ro,int l,int r,int v)
{//cerr<<l<<" "<<r<<endl;
if(l>r)
return;
if(t[ro].l==l&&t[ro].r==r)
{
t[ro].mx=max(t[ro].mx,v);
t[ro].lz=max(t[ro].lz,v);
return;
}
pd(ro);
int mid=(t[ro].l+t[ro].r)>>1;
if(r<=mid)
update(ro<<1,l,r,v);
else if(l>mid)
update(ro<<1|1,l,r,v);
else
update(ro<<1,l,mid,v),update(ro<<1|1,mid+1,r,v);
t[ro].mx=max(t[ro<<1].mx,t[ro<<1|1].mx);
}
int ques(int ro,int p)
{
if(t[ro].l==t[ro].r)
return t[ro].mx;
pd(ro);
int mid=(t[ro].l+t[ro].r)>>1;
if(p<=mid)
return ques(ro<<1,p);
else
return ques(ro<<1|1,p);
}
}mn,mx;
int main()
{
scanf("%s",c+1);
n=strlen(c+1);
for(int i=1;i<=n;i++)
s[2*i]=c[i],s[2*i+1]='#';
s[0]='$',s[1]='#',s[2*n+2]='%';
int mxw=0,w;
mn.build(1,1,n),mx.build(1,1,n);
for(int i=1;i<2*n+2;i++)
{
if(i<mxw)
f[i]=min(f[2*w-i],mxw-i);
else
f[i]=1;
for(;s[i+f[i]]==s[i-f[i]];f[i]++);
if(i+f[i]>mxw)
mxw=i+f[i],w=i;
if(s[i]=='#')
mx.update(1,max(1,(i+1)/2),min(n,(i+1)/2+(f[i]-1)/2-1),-i+1),mn.update(1,max(1,(i-1)/2-(f[i]-1)/2+1),min(n,(i-1)/2),i+1);
else
mx.update(1,max(1,i/2),min(n,i/2+f[i]/2-1),-i+1),mn.update(1,max(1,i/2-f[i]/2+1),min(n,i/2),i+1);
}
for(int i=2;i<=n;i++)
ans=max(ans,mx.ques(1,i-1)+2*(i-1)+mn.ques(1,i)-2*i);//,cerr<<i<<" "<<mn.ques(1,i)-2*i<<" "<<mx.ques(1,i)+2*i<<endl;;
printf("%d\n",ans);
return 0;
}
bzoj 2565: 最长双回文串【manacher+线段树】的更多相关文章
- BZOJ 2565: 最长双回文串 [Manacher]
2565: 最长双回文串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1842 Solved: 935[Submit][Status][Discu ...
- bzoj 2565: 最长双回文串 manacher算法
2565: 最长双回文串 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem. ...
- 洛谷P4555 [国家集训队]最长双回文串(manacher 线段树)
题意 题目链接 Sol 我的做法比较naive..首先manacher预处理出以每个位置为中心的回文串的长度.然后枚举一个中间位置,现在要考虑的就是能覆盖到i - 1的回文串中 中心最靠左的,和能覆盖 ...
- BZOJ 2565 最长双回文串(manacher)
565: 最长双回文串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3343 Solved: 1692[Submit][Status][Discu ...
- Manacher || P4555 [国家集训队]最长双回文串 || BZOJ 2565: 最长双回文串
题面:P4555 [国家集训队]最长双回文串 题解:就.就考察马拉车的理解 在原始马拉车的基础上多维护个P[i].Q[i]数组,分别表示以i结尾最长回文子串的长度和以i开头的最长回文子串的长度 然后就 ...
- bzoj 2565: 最长双回文串
Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为"abc",逆序为"cba",不相同).输入 ...
- bzoj 2565: 最长双回文串 回文自动机
题目: Description 顺序和逆序读起来完全一样的串叫做回文串.比如acbca是回文串,而abc不是(abc的顺序为"abc",逆序为"cba",不相同 ...
- BZOJ 2565 最长双回文串(回文自动机)
题意 给一个长度为N的字符串S.对于一个字符串AB,如果A和B都是回文串,那么称AB是一个双回文串.求问S最长双回文子串的长度?N <= 100000 题解 正反双向构造回文自动机,得到某一个点 ...
- HYSBZ 2565 最长双回文串 (回文树)
2565: 最长双回文串 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1377 Solved: 714 [Submit][Status][Dis ...
随机推荐
- background-size使用参考指南
语法:background-size :[ <length> | <percentage> | auto ]{1,2} | cover | contain相关属性: backg ...
- 【转载】高性能IO模型浅析
服务器端编程经常需要构造高性能的IO模型,常见的IO模型有四种: (1)同步阻塞IO(Blocking IO):即传统的IO模型. (2)同步非阻塞IO(Non-blocking IO):默认创建的s ...
- HDU 2578 Dating with girls(1) [补7-26]
Dating with girls(1) Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- Struts拦截器(转)
xml <?xml version="1.0" encoding="UTF-8" ?> <!DOCTYPE struts PUBLIC &qu ...
- Metasploit学习笔记之——情报搜集
1.情报搜集 1.1外围信息搜索 1.1.1通过DNS和IP地址挖掘目标网络信息 (1)whois域名注冊信息查询(BT5.kali专有):root@kali:~# whois testfire.ne ...
- (转载)js(jquery)的on绑定点击事件执行两次的解决办法
js(jquery)的on绑定点击事件执行两次的解决办法—不是事件绑定而是事件冒泡 遇到的问题:jquery中用.on()给页面中新加的元素添加点击事件时,点击事件源,绑定的事件执行两次,这里的ale ...
- 利用PHP判断iPhone、iPad、Android、PC设备
首页那张大图确实是一个比较头疼的问题 在PC上显示是没问题的,可是到手机上就会超出页面一大截,如果做自适应,图片会被强制压缩 无奈只能用wp_is_mobile()函数在手机上隐藏了这张图,可是这函数 ...
- sanic官方文档解析之logging和request Data
1,sanic的logging: Sanic允许有做不同类型的日志(通过的日志,错误的日志),在基于Python3的日志API接口请求,你必须具备基本的Python3的日志知识,在你如果想创建一个新的 ...
- linux初级学习笔记三:linux操作系统及常用命令,及如何复制和移动文件!(视频序号:02_4)
本节学习的命令:cp,mv,install,du,read 本节学习的技能:文件的移动与复制 cp( copy):复制和移动文件 cp SRC DEST -r:递归复制一个目录及其目录中的所有文件 - ...
- codeforces B. 4-point polyline 解题报告
题目链接:http://codeforces.com/problemset/problem/452/B 题目意思:给出一个长为n,宽为 m 的矩形,要从这里面(包括边上)找出4个不同的点,使得以某一个 ...