//题意:问需要添加几条边使得这张图成为每个点都等价(强连通图)

我们先把图中的强连通分量缩点

可能他本身就是满足条件,那么直接输出0

经过缩点后,就可以把强连通分量看成一个个独立的点,在这张图上搞一个强连通图,我们可以根据强连通的性质,也就是每个点都要有被指向边和出去的边,那么也就是求一下每个点(强连通分量)的入度和出度,把出度==0的点个数加起来,把入度==0的点个数加起来,比一比谁大,输出谁,因为我们可以直接在入度为0和出度为0的两点间加边,所以取大的那个就满足。

#include<iostream>
#include<cstdio>
#include<math.h>
#include<queue>
#include<stdlib.h>
#include<string>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long LL;
#define PI acos(-1.0)
#define N 20010 struct asd{
int to;
int next;
};
asd q[N*3];
int head[N*3];
int tol; int low[N];
int dfn[N];
int vis[N];
int stap[N];
int in[N];
int kr[N];
int kc[N];
int tp,p;
int cnt;
int n; void tarjan(int u)
{
dfn[u]=low[u]=++tp;
stap[++p]=u;
vis[u]=1;
for(int i=head[u];i!=-1;i=q[i].next)
{
int k=q[i].to;
if(!dfn[k])
{
tarjan(k);
low[u]=min(low[u],low[k]);
}
else if(vis[k])
{
low[u]=min(low[u],dfn[k]);
}
}
if(dfn[u]==low[u])
{
cnt++;
int temp;
while(1)
{
temp=stap[p];
vis[temp]=0;
in[temp]=cnt;
--p;
if(temp==u)
break;
}
}
}
void soga()
{
if(cnt==1)
{
printf("0\n");
return;
}
int pr,pc;
memset(kr,0,sizeof(kr));
memset(kc,0,sizeof(kc));
for(int i=1;i<=n;i++)
{
for(int k=head[i];k!=-1;k=q[k].next)
{
int v=q[k].to;
if(in[v]!=in[i])
{
kr[in[v]]++;
kc[in[i]]++;
}
}
}
pc=pr=0;
for(int i=1;i<=cnt;i++)
{
if(!kr[i])
{
pr++;
}
if(!kc[i])
{
pc++;
}
}
printf("%d\n",max(pr,pc));
} void add(int a,int b)
{
q[tol].to=b;
q[tol].next=head[a];
head[a]=tol++;
} int main()
{
int m;
int T;
scanf("%d",&T);
while(T--)
{
int a,b;
scanf("%d%d",&n,&m);
tol=0;
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
add(a,b);
}
cnt=p=tp=0;
memset(dfn,0,sizeof(dfn));
memset(vis,0,sizeof(vis));
memset(in,0,sizeof(in)); for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
soga();
}
return 0;
}

hdu2767(图的强连通)的更多相关文章

  1. hdu2767 Proving Equivalences --- 强连通

    给一个图,问至少加入�多少条有向边能够使图变成强连通的. 原图是有环的,缩点建图,在该DAG图上我们能够发现,要使该图变成强连通图必须连成环 而加入�最少的边连成环,就是把图上入度为0和出度为0的点连 ...

  2. Kosaraju与Tarjan(图的强连通分量)

    Kosaraju 这个算法是用来求解图的强连通分量的,这个是图论的一些知识,前段时间没有学,这几天在补坑... 强连通分量: 有向图中,尽可能多的若干顶点组成的子图中,这些顶点都是相互可到达的,则这些 ...

  3. 图的强连通&双连通

    http://www.cnblogs.com/wenruo/p/4989425.html 强连通 强连通是指一个有向图中任意两点v1.v2间存在v1到v2的路径及v2到v1的路径. dfs遍历一个图, ...

  4. Kosaraju算法解析: 求解图的强连通分量

    Kosaraju算法解析: 求解图的强连通分量 欢迎探讨,如有错误敬请指正 如需转载,请注明出处 http://www.cnblogs.com/nullzx/ 1. 定义 连通分量:在无向图中,即为连 ...

  5. Proving Equivalences(缩点+有环图变强连通分量)【tarjian算法】

    Proving Equivalences 题目链接(点击) 参考博客(点击) Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768 ...

  6. loj 1210 (求最少的加边数使得图变成强连通)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1210 思路:首先是缩点染色,然后重建并且统计新图中的每个点的入度和出度,于是答案就是m ...

  7. 图的强连通分量-Kosaraju算法

    输入一个有向图,计算每个节点所在强连通分量的编号,输出强连通分量的个数 #include<iostream> #include<cstring> #include<vec ...

  8. 求图的强连通分量--tarjan算法

    一:tarjan算法详解 ◦思想: ◦ ◦做一遍DFS,用dfn[i]表示编号为i的节点在DFS过程中的访问序号(也可以叫做开始时间)用low[i]表示i节点DFS过程中i的下方节点所能到达的开始时间 ...

  9. 萌新学习图的强连通(Tarjan算法)笔记

    --主要摘自北京大学暑期课<ACM/ICPC竞赛训练> 在有向图G中,如果任意两个不同顶点相互可达,则称该有向图是强连通的: 有向图G的极大强连通子图称为G的强连通分支: Tarjan算法 ...

随机推荐

  1. HDOJ 1217 Arbitrage(拟最短路,floyd算法)

    Arbitrage Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total ...

  2. javascript 复制粘贴操作

    function CopyCode(key){ var trElements = document.all.tags("tr");//获取tr元素 var i; for(i = 0 ...

  3. oracle 导出数据字典

    一.查看当前用户下表名,及表名的备注 select * from user_tab_comments where table_name like 'T_ONLINE%' 二.查询数据字典 -- 1. ...

  4. 【转载】一些VS2013的使用技巧

    1. Peek View 可以在不新建TAB的情况下快速查看.编辑一个函数的代码. 用法:在光标移至某个函数下,按下alt+F12. 然后在Peek窗口里可以继续按alt+F12.然后按ctrl+al ...

  5. LA4043 - Ants(二分图完备最佳匹配KM)

    option=com_onlinejudge&Itemid=8&page=show_problem&problem=2044">https://icpcarch ...

  6. vim note (1)

    'vim' go into the vim mode 'i' 'a' 's'    is means insert mode 'v' is means visual mode 'esc' is mea ...

  7. XMLHTTPRequest DEMO(发送测试)

    对于其中的HTTP状态,我们知道200-299表明访问成功:300-399表明需要客户端 反应来满足请求:400-499和500-599表明客户端和服务器出错:其中常用的如404表示资源没找到,403 ...

  8. linux安装jdk tomcat nginx 以及常用命令

    linux: 操作系统,应用服务器上 常用命令: cd 切换命令 cd / cd ~ cd ../../ cd xx ll 展示所有的文件 ll -h 友好的展示 mkdir 创建目录 mkdir 目 ...

  9. 【献给CWNU的师弟】Web篇

    2014年10月8日 献给CWNU的师弟

  10. mongo-spark 安装排故 ./sbt check

    [error] at com.mongodb.connection.CommandProtocol.execute(CommandProtocol.java:) [error] at com.mong ...