洛谷 P1880 [NOI1995]石子合并
题目描述
在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。
试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.
输入输出格式
输入格式:
数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.
输出格式:
输出共2行,第1行为最小得分,第2行为最大得分.
输入输出样例
4
4 5 9 4
43
54
解题思路:
一道环形DP,f[i][j]表示i到j这一段合并成一堆的最大值,f[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + sum[i+1][j]) i<=k<j,对于环形的处理是把这个环复制,接到末尾,其中sum[i+1][j]表示a[i] + a[i+1] + .. + a[j].
AC代码:
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,f1[][],f2[][],num[],maxans,minans = ,he[];//f1为最大值,f2为最小值
int max(int a,int b) {
if(a >= b) return a;
else return b;
}
int min(int a,int b) {
if(a <= b) return a;
else return b;
}
int main()
{
cin >> n;
memset(f2,0x7f7f7f,sizeof(f2));//将最小值初始位足够大
for(int i = ; i <= n; i++) {//读入
scanf("%d",&num[i]);
he[i] = he[i-] + num[i];
f2[i][i] = ;
}
for(int i = n+; i <= n+n; i++) {//将这个环复制一遍接到末尾
num[i] = num[i-n];
he[i] = he[i-] + num[i];
f2[i][i] = ;
}
for(int p = ; p < n; p++)//枚举区间长度
for(int i = , j = i + p; i < n + n && j < n + n; i++, j = i + p)//枚举起点和终点
for(int k = i; k < j; k++){//设置断点
f1[i][j] = max(f1[i][j], f1[i][k] + f1[k+][j] + he[j] - he[i-]);//状态转移
f2[i][j] = min(f2[i][j], f2[i][k] + f2[k+][j] + he[j] - he[i-]);//状态转移
} for(int i = ; i <= n; i++) {//找最大值和最小值
maxans = max(maxans,f1[i][i+n-]);
minans = min(minans,f2[i][i+n-]);
}
printf("%d\n%d",minans,maxans); return ;
}
洛谷 P1880 [NOI1995]石子合并的更多相关文章
- 洛谷 P1880 [NOI1995]石子合并 题解
P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...
- 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并
洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...
- [洛谷P1880][NOI1995]石子合并
区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...
- 洛谷 P1880 [NOI1995] 石子合并(区间DP)
传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...
- 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]
题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...
- 洛谷 P1880 [NOI1995]石子合并(区间DP)
嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]
P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...
- 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链
区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...
随机推荐
- 使用mysql-proxy 快速实现mysql 集群 读写分离
目前较为常见的mysql读写分离分为两种: 1. 基于程序代码内部实现:在代码中对select操作分发到从库:其它操作由主库执行:这类方法也是目前生产环境应用最广泛,知名的如DISCUZ X2.优点是 ...
- Discuz! X2.5数据库字典【转载】
DROP TABLE IF EXISTS pre_common_admincp_cmenu; CREATE TABLE pre_common_admincp_cmenu ( `id` SMALLINT ...
- 使用流的方式去进行post请求解决中文乱码问题返回xml格式
/** * 请求post * @Title: getHttpURLConnection * @Description: TODO(这里用一句话描述这个方法的作用) * @param: @param u ...
- 使用 docker 安装 OpenVAS 漏洞扫描软件
https://blog.csdn.net/freewebsys/article/details/78804624
- Spring Cloud体系实现标签路由
如果你正在使用Spring Cloud体系,在实际使用过程中正遇到以下问题,可以阅读本文章的内容作为后续你解决这些问题的参考,文章内容不保证无错,请务必仔细思考之后再进行实践. 问题: 1,本地连上开 ...
- Use Elasticksearch to solve TOP N issue
The raw data is like timestamp, router, interface, src_ip, dst_ip, protocol, pkts 10000000, 1.1.1.1 ...
- Android进程间通信之内部类作为事件监听器
在Android中,使用内部类能够在当前类里面发用改监听器类,由于监听器类是外部类的内部类.所以能够自由訪问外部类的全部界面组件. 下面是一个调用系统内部类实现短信发送的一个样例: SMS类: pac ...
- myEclipse怎样将程序部署到tomcat(附录MyEclipse调试快捷键)
部署 1.选中你要部署的项目,在工具栏找到 Deploy MyEclipse J2EE Project to Server 2.单击Add,即出现例如以下界面.选择对应的Server,要和你在配置to ...
- EEPlat的控制器概念
控制器是EEPlat平台界面层部分的核心概念.平台中界面展示都是通过平台的各种控制器综合控制输出的. EEPlat平台的界面层模型採用了HMVC模式.HMVC模式的採用使得EEPlat平台界面层可以实 ...
- 8.跟我学solr---UpdateRequestProcessor具体解释
简单介绍 java web开发的同学应该非常熟悉,在开发中常常会使用filter来处理请求中的一些切面需求. solr也提供类似的一种链式结构的handler来满足在加入数据索引请求的时候.通过切片的 ...