题目描述

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

输入输出格式

输入格式:

数据的第1行试正整数N,1≤N≤100,表示有N堆石子.第2行有N个数,分别表示每堆石子的个数.

输出格式:

输出共2行,第1行为最小得分,第2行为最大得分.

输入输出样例

输入样例#1:

4
4 5 9 4
输出样例#1:

43
54
解题思路:
一道环形DP,f[i][j]表示i到j这一段合并成一堆的最大值,f[i][j] = max(f[i][j], f[i][k] + f[k+1][j] + sum[i+1][j]) i<=k<j,对于环形的处理是把这个环复制,接到末尾,其中sum[i+1][j]表示a[i] + a[i+1] + .. + a[j].
AC代码:
 #include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
int n,f1[][],f2[][],num[],maxans,minans = ,he[];//f1为最大值,f2为最小值
int max(int a,int b) {
if(a >= b) return a;
else return b;
}
int min(int a,int b) {
if(a <= b) return a;
else return b;
}
int main()
{
cin >> n;
memset(f2,0x7f7f7f,sizeof(f2));//将最小值初始位足够大
for(int i = ; i <= n; i++) {//读入
scanf("%d",&num[i]);
he[i] = he[i-] + num[i];
f2[i][i] = ;
}
for(int i = n+; i <= n+n; i++) {//将这个环复制一遍接到末尾
num[i] = num[i-n];
he[i] = he[i-] + num[i];
f2[i][i] = ;
}
for(int p = ; p < n; p++)//枚举区间长度
for(int i = , j = i + p; i < n + n && j < n + n; i++, j = i + p)//枚举起点和终点
for(int k = i; k < j; k++){//设置断点
f1[i][j] = max(f1[i][j], f1[i][k] + f1[k+][j] + he[j] - he[i-]);//状态转移
f2[i][j] = min(f2[i][j], f2[i][k] + f2[k+][j] + he[j] - he[i-]);//状态转移
} for(int i = ; i <= n; i++) {//找最大值和最小值
maxans = max(maxans,f1[i][i+n-]);
minans = min(minans,f2[i][i+n-]);
}
printf("%d\n%d",minans,maxans); return ;
}



洛谷 P1880 [NOI1995]石子合并的更多相关文章

  1. 洛谷 P1880 [NOI1995]石子合并 题解

    P1880 [NOI1995]石子合并 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试 ...

  2. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  3. [洛谷P1880][NOI1995]石子合并

    区间DP模板题 区间DP模板Code: ;len<=n;len++) { ;i<=*n-;i++) //区间左端点 { ; //区间右端点 for(int k=i;k<j;k++) ...

  4. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  5. 洛谷P1880 [NOI1995] 石子合并 [DP,前缀和]

    题目传送门 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆 ...

  6. 洛谷 P1880 [NOI1995]石子合并(区间DP)

    嗯... 题目链接:https://www.luogu.org/problem/P1880 这道题特点在于石子是一个环,所以让a[i+n] = a[i](两倍长度)即可解决环的问题,然后注意求区间最小 ...

  7. 【区间dp】- P1880 [NOI1995] 石子合并

    记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...

  8. P1880 [NOI1995]石子合并[区间dp+四边形不等式优化]

    P1880 [NOI1995]石子合并 丢个地址就跑(关于四边形不等式复杂度是n方的证明) 嗯所以这题利用决策的单调性来减少k断点的枚举次数.具体看lyd书.这部分很生疏,但是我还是选择先不管了. # ...

  9. 区间DP小结 及例题分析:P1880 [NOI1995]石子合并,P1063 能量项链

    区间类动态规划 一.基本概念 区间类动态规划是线性动态规划的拓展,它在分阶段划分问题时,与阶段中元素出现的顺序和由前一阶段的那些元素合并而来由很大的关系.例如状态f [ i ][ j ],它表示以已合 ...

随机推荐

  1. [HAOI2011]Problem b 题解

    题目大意: 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y)=k. 思路: 设f(k)为当1≤x≤n,1≤y≤m,且n≤m,使gcd(x,y)=k的数对 ...

  2. 51nod1020 逆序排列

    t<=10000个问,每次问n<=1000的全排列中逆序数对为k<=10000个的有多少,mod 1e9+7. 直接dp,$f(i,j)$--i的全排列中逆序数对为j的有多少,$f( ...

  3. MU Puzzle HDU - 4662

    Suppose there are the symbols M, I, and U which can be combined to produce strings of symbols called ...

  4. POJ 3281_Dining

    题意: FJ准备了F种食物和D种饮料,每头牛都有喜欢的食物和饮料,并且每头牛都只能分配一种食物和饮料.问如何分配使得同时得到喜欢的食物和饮料的牛数量最多. 分析: 首先想到将牛与其对应的食物和饮料匹配 ...

  5. lines-HDU5124(区间处理 +离散化)

    Problem Description John has several lines. The lines are covered on the X axis. Let A is a point wh ...

  6. Ubuntu 16.04安装SwitchHosts

    下载: https://github.com/oldj/SwitchHosts/releases 解压: unzip SwitchHosts-linux-x64_v3.3.6.5287.zip 移动: ...

  7. excel 合并 单元格内容

    刚刚有人问怎么合并单元格内容,正好excel 我也不会,顺便查查记录一下 1.假设有两个单元格如下:           单元格1 单元格2           2. 在一个空白单元格输入 =( 这代 ...

  8. Linux学习系列之lvs+keepalived

    LVS简介 LVS介绍 LVS是Linux Virtual Server的缩写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统,属于4层负载均衡 ipvs和ipvsadm的关系 我们使用配置LV ...

  9. Android GMS无法通过网络定位

    前言          欢迎大家我分享和推荐好用的代码段~~ 声明          欢迎转载.但请保留文章原始出处:          CSDN:http://www.csdn.net        ...

  10. 安装Nginx须要系统的辅助软件(linux)

    安装Nginx须要系统的辅助软件(linux): yum -y install make gcc gcc-c++ ncurses-devel yum -y install zlib zlib-deve ...