Divisible Group Sums

Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways. You will have to determine how many of these chosen groups have a sum, which is divisible by D.

Input

Input starts with an integer T (≤ 20), denoting the number of test cases.

The first line of each case contains two integers N (0 < N ≤ 200) and Q (0 < Q ≤ 10). Here N indicates how many numbers are there and Q is the total number of queries. Each of the next N lines contains one 32 bit signed integer. The queries will have to be answered based on these N numbers. Each of the next Q lines contains two integers D (0 < D ≤ 20) and M (0 < M ≤ 10).

Output

For each case, print the case number in a line. Then for each query, print the number of desired groups in a single line.

Sample Input

2

10 2

1

2

3

4

5

6

7

8

9

10

5 1

5 2

5 1

2

3

4

5

6

6 2

Sample Output

Case 1:

2

9

Case 2:

1

从n个数字里面取m个有C(n,m)种取法,问有多少种取法使得总和是D的倍数

因为询问好多组(m,d),所以每次都要对不同的d先取模,然后显然就是个背包啦,数字不超过d,只取m个,最大容量只有200

然后特么给的ai还有负数,,,我真是,,,

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<deque>
#include<set>
#include<map>
#include<ctime>
#define LL long long
#define inf 0x7ffffff
#define pa pair<LL,int>
#define mkp(a,b) make_pair(a,b)
using namespace std;
inline LL read()
{
LL x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int n,q;
int a[];
int b[];
LL f[][];
inline void work(int cur)
{
printf("Case %d:\n",cur);
n=read();q=read();
for (int i=;i<=n;i++)a[i]=read();
for (int i=;i<=q;i++)
{
int mod=read(),m=read();
memset(f,,sizeof(f));f[][]=;
for (int j=;j<=n;j++)b[j]=(a[j]%mod+mod)%mod;
for (int j=;j<=n;j++)
{
for (int k=m;k>=;k--)
for (int l=m*mod;l>=b[j];l--)
f[k][l]+=f[k-][l-b[j]];
}
LL sum=;
for (int j=;j<=m*mod;j+=mod)sum+=f[m][j];
printf("%lld\n",sum);
}
}
int main()
{
int T=read(),tt=;
while (T--)work(++tt);
}

LightOJ 1125

LightOJ1125 Divisible Group Sums的更多相关文章

  1. LightOJ1125 Divisible Group Sums(DP)

    题目问从N个数中取出M个数,有多少种取法使它们的和能被D整除. dp[i][j][k]表示,前i个数取出j个数模D的余数为k的方案数 我用“我为人人”的方式来转移,就从i到i+1转移,对于第i+1个数 ...

  2. Light oj 1125 - Divisible Group Sums (dp)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1125 题意: 给你n个数,q次询问,每次询问问你取其中m个数是d的整数倍的方案 ...

  3. Divisible Group Sums

    Divisible Group Sums Given a list of N numbers you will be allowed to choose any M of them. So you c ...

  4. lightoj 1125 - Divisible Group Sums (dp)

    Given a list of N numbers you will be allowed to choose any M of them. So you can choose in NCM ways ...

  5. UVa 10616 - Divisible Group Sums

    称号:给你n数字.免去m一个,这使得他们可分割d.问:有多少种借贷. 分析:dp,D01背包. 背包整数分区. 首先.整点d.则全部数字均在整数区间[0,d)上: 然后,确定背包容量,最大为20*10 ...

  6. UVA题目分类

    题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...

  7. 一位学长的ACM总结(感触颇深)

    发信人: fennec (fennec), 信区: Algorithm 标 题: acm 总结 by fennec 发信站: 吉林大学牡丹园站 (Wed Dec 8 16:27:55 2004) AC ...

  8. lightoj刷题日记

    提高自己的实力, 也为了证明, 开始板刷lightoj,每天题量>=1: 题目的类型会在这边说明,具体见分页博客: SUM=54; 1000 Greetings from LightOJ [简单 ...

  9. [Swift]LeetCode974. 和可被 K 整除的子数组 | Subarray Sums Divisible by K

    Given an array A of integers, return the number of (contiguous, non-empty) subarrays that have a sum ...

随机推荐

  1. 微擎框架中receive.php代码分析

  2. 多源最短路径 – Floyd-Warshall Algorithm

    介绍: 是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. Floyd-Warshall算法的时间复杂度是O(N3) ...

  3. 计算机图形学:贝塞尔曲线(Bezier Curve)

    计算机图形学:贝塞尔曲线(Bezier Curve) 贝塞尔能由贝塞尔样条组合而成,也可产生更高维的贝塞尔曲面.

  4. Ubuntu 18.04 上使用 OpenJDK 安装并运行 Tomcat

    在Linux上安装与卸载JDK和JRE,两种常用方法: 一.通过 apt-get 命令在线进行安装与卸载(会自动配置好环境变量) 二.通过下载并解压 .tar.gz 包进行手动安装与手动卸载(需要手动 ...

  5. linux环境nginx的安装与使用

    因为公司需要需要安装一系列环境,新手上路第一次配的时候什么也不懂在网上找了半天,觉得这篇不错,我在这里顺便记录一下.(原文:https://www.cnblogs.com/wyd168/p/66365 ...

  6. A*和IDA*介绍

    \(A*\)算法是一种很神奇的搜索方法,它属于启发式搜索中的一种.A*最主要的功能当然就是用来剪枝,提高搜索的效率.A*主要的实现方法是通过一个估价函数,每次对下一步进行一个估价,根据估价出的值来决定 ...

  7. javascipt的forEach

    1.Array let arr = [1, 2, 3]; arr.forEach(function (element, index, array) { console.log('数组中每个元素:', ...

  8. 数据库事务ACID和事务的隔离级别

    借鉴:https://blog.csdn.net/zh521zh/article/details/69400053和https://blog.csdn.net/May_3/article/detail ...

  9. simulation clock gen unit (推荐)

    //Normal Clock Block always begin:clk_blk clk <=; # clk<=; #; end //Improved Clock Block, impr ...

  10. python爬虫基础03-requests库

    优雅到骨子里的Requests 本文地址:https://www.jianshu.com/p/678489e022c8 简介 上一篇文章介绍了Python的网络请求库urllib和urllib3的使用 ...