传送门

如果能够根据题意看出这是一个堆的话,那么就有些思路了。。

首先堆顶必须是最小元素,然后左右儿子可以预处理出来都有多少个数,

把剩余的数任意分配给两个儿子,用排列组合即可

dp(now) = dp(now << 1) * dp(now << 1 | 1) * C(sum[now] - 1, sum[now << 1])

#include <cstdio>
#define N 5000001
#define LL long long int n;
LL p, inv[N], A[N], B[N], s[N]; inline LL C(int x, int y)
{
return A[x] * B[y] % p * B[x - y] % p;
} inline LL dp(int now)
{
if(!s[now] || s[now] == 1) return 1;
return dp(now << 1) * dp(now << 1 | 1) % p * C(s[now] - 1, s[now << 1]) % p;
} int main()
{
int i, j;
scanf("%d %lld", &n, &p);
inv[1] = A[1] = A[0] = B[0] = B[1] = 1;
for(i = 2; i <= n; i++)
{
inv[i] = -(p / i) * inv[p % i] % p;
A[i] = A[i - 1] * i % p;
B[i] = B[i - 1] * inv[i] % p;
}
for(i = 1; i <= n; i++)
for(j = i; j; j >>= 1) s[j]++;
printf("%lld\n", (dp(1) + p) % p);
return 0;
}

  

[luoguP2606] [ZJOI2010]排列计数(DP)的更多相关文章

  1. BZOJ.2111.[ZJOI2010]排列计数(DP Lucas)

    题目链接 对于\(a_i>a_{i/2}\),我们能想到小根堆.题意就是,求构成大小为\(n\)的小根堆有多少种方案. 考虑DP,\(f[i]\)表示构成大小为\(i\)的小根堆的方案数,那么如 ...

  2. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  3. 【BZOJ2111】[ZJOI2010]排列计数(组合数学)

    [BZOJ2111][ZJOI2010]排列计数(组合数学) 题面 BZOJ 洛谷 题解 就是今年九省联考\(D1T2\)的弱化版? 直接递归组合数算就好了. 注意一下模数可以小于\(n\),所以要存 ...

  4. 洛谷 P2606 [ZJOI2010]排列计数 解题报告

    P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...

  5. P2606 [ZJOI2010]排列计数

    P2606 [ZJOI2010]排列计数 因为每个结点至多有一个前驱,所以我们可以发现这是一个二叉树.现在我们要求的就是以1为根的二叉树中,有多少种情况,满足小根堆的性质. 设\(f(i)\)表示以\ ...

  6. 洛谷P2606 [ZJOI2010]排列计数(数位dp)

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很 ...

  7. 洛谷P2606 [ZJOI2010]排列计数(组合数 dp)

    题意 题目链接 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案 ...

  8. 【bzoj2111】[ZJOI2010]Perm 排列计数 dp+Lucas定理

    题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Mogic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Mogic的,答案可能很 ...

  9. 洛谷P2606 [ZJOI2010]排列计数 组合数学+DP

    题意:称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大, ...

随机推荐

  1. Android镜像文件ramdisk.img,system.img,userdata.img介绍

    Android 源码编译后,在out目录下生成的三个镜像文件:ramdisk.img,system.img,userdata.img以及它们对应的目录树root,system,data. ramdis ...

  2. 【Web应用】JAVA网络上传大文件报500错误

    问题描述 当通过 JAVA 网站上传大文件,会报 500 错误. 问题分析 因为 Azure 的 Java 网站都是基于 IIS 转发的,所以我们需要关注 IIS 的文件上传限制以及 requestT ...

  3. CSS-学习笔记四

    1.*用于匹配任何的标记 2.>用于指定父子节点关系 3.E+F毗邻元素选择器,匹配所以紧随E元素之后的同级元素F 4.E~F匹配所以E元素之后的同级元素F 5.名称[表达式] [att=val ...

  4. 洛谷 P2483 [SDOI2010]魔法猪学院

    题目描述 iPig在假期来到了传说中的魔法猪学院,开始为期两个月的魔法猪训练.经过了一周理论知识和一周基本魔法的学习之后,iPig对猪世界的世界本原有了很多的了解:众所周知,世界是由元素构成的:元素与 ...

  5. 使用Kubernetes里的job计算圆周率后2000位

    使用Kubernetes里的job(作业),我们可以很方便地执行一些比较耗时的操作. 新建一个job.ymal文件: 定义了一个Kubernetes job,名称为pi,类型为job,容器名称为pi, ...

  6. HTTPs与HTTP的性能

    (参考:https://blog.csdn.net/chinafire525/article/details/78911734 https://blog.csdn.net/hherima/articl ...

  7. HtmlUnit爬取Ajax动态生成的网页以及自动调用页面javascript函数

    HtmlUnit官网的介绍: HtmlUnit是一款基于Java的没有图形界面的浏览器程序.它模仿HTML document并且提供API让开发人员像是在一个正常的浏览器上操作一样,获取网页内容,填充 ...

  8. 在Solr中配置中文分词IKAnalyzer

    李克华 云计算高级群: 292870151 交流:Hadoop.NoSQL.分布式.lucene.solr.nutch 在Solr中配置中文分词IKAnalyzer 1.在配置文件schema.xml ...

  9. 数组、Math、JOSN总结

    json对象: 1.数组有length属性[尽量使用for循环] 2.而json没有length属性[可以使用for...in...循环] 3.for in 不能遍历页面中的节点对象. for ( v ...

  10. Python list 列表和tuple元组

    1 list是一种Python的数据类型--列表 list是一种有序的集合,可以进行增删改查 >>>name=[aa,bb,cc] >>>name ['aa','b ...