BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】
题目
小A和小B又想到了一个新的游戏。
这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色。
最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同。
小A可以移动白色棋子,小B可以移动黑色的棋子,他们每次操作可以移动1到d个棋子。
每当移动某一个棋子时,这个棋子不能跨越两边的棋子,当然也不可以出界。当谁不可以操作时,谁就失败了。
小A和小B轮流操作,现在小A先移动,有多少种初始棋子的布局会使他胜利呢?
输入格式
共一行,三个数,n,k,d。
输出格式
输出小A胜利的方案总数。答案对1000000007取模。
输入样例
10 4 2
输出样例
182
提示
1<=d<=k<=n<=10000, k为偶数,k<=100。
题解
同BZOJ3576小奇的博弈
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 10005,maxm = 100005,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
LL f[17][maxn],C[maxn][105];
int n,K,d;
void init(){
for (int i = 0; i <= n; i++){
C[i][0] = 1;
for (int j = 1; j <= i && j <= K; j++)
C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % P;
}
}
int main(){
n = read(); K = read(); d = read();
init();
f[0][0] = 1;
for (LL i = 0; i <= 16; i++){
for (LL j = 0; j <= n - K; j++){
for (LL x = 0; x * (d + 1) <= K / 2 && x * (d + 1) * (1ll << i) + j <= n - K; x++)
f[i + 1][j + x * (d + 1) * (1ll << i)] = (f[i + 1][j + x * (d + 1) * (1ll << i)] + f[i][j] * C[K / 2][x * (d + 1)] % P) % P;
}
}
LL ans = 0;
for (LL i = 0; i <= n - K; i++) ans = (ans + f[16][i] * C[n - K - i + K / 2][K / 2]) % P;
printf("%lld\n",((C[n][K] - ans) % P + P) % P);
return 0;
}
BZOJ2281 [SDOI2011]黑白棋 【dp + 组合数】的更多相关文章
- [BZOJ2281][SDOI2011]黑白棋(K-Nim博弈)
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 626 Solved: 390[Submit][Status][ ...
- BZOJ2281[Sdoi2011]黑白棋&BZOJ4550小奇的博弈——DP+nimk游戏
题目描述 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小A可以移动白色 ...
- BZOJ2281:[SDOI2011]黑白棋(博弈论,组合数学,DP)
Description 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色不同. 小 ...
- bzoj2281 [Sdoi2011]黑白棋
一眼$nimk$游戏,后来觉得不对劲,看了黄学长博客发现真的不是$nimk$. 就当是$nimk$做吧,那么我们要保证每一位上一的个数都是$d+1$的倍数. $dp$:$f[i][j]$表示从低到高第 ...
- BZOJ 2281: [Sdoi2011]黑白棋(dp+博弈论)
传送门 解题思路 首先发现可以把相邻的黑白棋子之间的距离看成一堆棋子,那么这个就可以抽象成\(Nim\)游戏每次可以取\(d\)堆这个游戏,而这个游戏的\(SG\)值为\(x\%(d+1)\),那么题 ...
- 【BZOJ2281】[SDOI2011]黑白棋(博弈论,动态规划)
[BZOJ2281][SDOI2011]黑白棋(博弈论,动态规划) 题面 BZOJ 洛谷 题解 先看懂这题目在干什么. 首先BZOJ上面的题面没有图,换到洛谷看题就有图了. 不难发现都相邻的两个异色棋 ...
- P2490 [SDOI2011]黑白棋
P2490 [SDOI2011]黑白棋 题意 一个 \(1*n\) 的棋盘上,A 可以移动白色棋子,B 可以移动黑色的棋子,其中白色不能往左,黑色不能往右.他们每次操作可以移动 1 到 \(d\) 个 ...
- Bzoj 2281 [Sdoi2011]黑白棋 题解
2281: [Sdoi2011]黑白棋 Time Limit: 3 Sec Memory Limit: 512 MBSubmit: 592 Solved: 362[Submit][Status][ ...
- 【BZOJ2281】【博弈论+DP】 [Sdoi2011]黑白棋
Description 黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是 ...
随机推荐
- Git .gitignore 设置为全局global
在操作Git时,我们会将修改的内容$git add . 到Git,Git会提示我们哪些文件都修改了.此时提示中会包括系统自动修改的文件,bin文件等.而我们add到Git时,并不希望将这些文件也一同a ...
- C++拾遗(一)——变量和基本类型
今天看到一个小小的算法,交换两个数却不引入中间变量,想了下没什么思路.看了答案是这样: int a, b; a = a + b; b = a - b; a = a - b; 感觉还是挺有想法的,借此也 ...
- VirtualBox Network设置的NAT和Bridged Adapter模式区别
区别: NAT模式下,虚拟机仍然可以访问网络,但是从网络接收者的眼中看来,这些网络请求都来自宿主机,而感知不到虚拟机.外网也无法访问虚拟机网络.虚拟机和宿主机器的IP地址在不同的子网,比如192.16 ...
- 如何在腾讯云上安装Cloud Foundry
Cloud Foundry是VMware推出的业界第一个开源PaaS云平台,它支持多种框架.语言.运行时环境.云平台及应用服务,使开发人员能够在几秒钟内进行应用程序的部署和扩展,无需担心任何基础架构的 ...
- SAP成都研究院郑晓霞:Shift Left Testing和软件质量保证的一些思考
今天的文章来自Jerry的同事,曾经的搭档郑晓霞(Zheng Kate).郑晓霞是在Jerry心中是一位很有实力的程序媛,2011年从西安某软件公司跳槽到SAP成都研究院.当时,成都研究院的CRM团队 ...
- java项目指向maven进行构建方式
1.在需要运行的机器中环境变量中配置maven 运行setting 4 配置环境变量 2.运行项目进行重新构建:alt+F5
- Linux内核漏洞利用-环境配置(转)
实验环境: Ubuntu-14.04.1 x86 linux-2.6.32.1 busybox-1.27.2 qemu 0x00 安装qemu sudo apt-get install qemu qe ...
- 在tomcat中配置连接池
在tomcat的conf/Catalina/localhost目录下配置项目路径,tomcat启动是会直接根据配置去加载项目. 虽然配置就一句话,但经常忘,今天记下来. 如果你的项目成名是:mypro ...
- HDU - 4802 - GPA (水题)
题意: 计算GPA,输入一个数字和一个字符串,用 数字×字符串对应的数值 思路: 用map对应数值,要注意的是字符串为P或者N的时候,不计入结果 代码: #include<iostream> ...
- GIMP图像窗口的自定义
具体功能包含:初始缩放比例.空格键按下时触发动作