uva558 Wormholes SPFA 求是否存在负环
Description

In the year 2163, wormholes were discovered. A wormhole is a subspace tunnel through space and time connecting two star systems. Wormholes have a few peculiar properties:
- Wormholes are one-way only.
- The time it takes to travel through a wormhole is negligible.
- A wormhole has two end points, each situated in a star system.
- A star system may have more than one wormhole end point within its boundaries.
- For some unknown reason, starting from our solar system, it is always possible to end up in any star system by following a sequence of wormholes (maybe Earth is the centre of the universe).
- Between any pair of star systems, there is at most one wormhole in either direction.
- There are no wormholes with both end points in the same star system.
All wormholes have a constant time difference between their end points. For example, a specific wormhole may cause the person travelling through it to end up 15 years in the future. Another wormhole may cause
the person to end up 42 years in the past.
A brilliant physicist, living on earth, wants to use wormholes to study the Big Bang. Since warp drive has not been invented yet, it is not possible for her to travel from one star system to another one directly. This can be done using wormholes, of
course.
The scientist wants to reach a cycle of wormholes somewhere in the universe that causes her to end up in the past. By travelling along this cycle a lot of times, the scientist is able to go back as far in time as necessary to reach the beginning of the universe
and see the Big Bang with her own eyes. Write a program to find out whether such a cycle exists.
Input
The input file starts with a line containing the number of cases c to be analysed. Each case starts with a line with two numbers n and m . These indicate the number of star systems ( )
and the number of wormholes ( ) . The star systems are numbered from 0 (our solar system) through n-1
. For each wormhole a line containing three integer numbers x, y and t is given. These numbers indicate that this wormhole allows someone to travel from the star system numbered x to the star system numbered y,
thereby ending up t ( ) years in the future.
cid=84319" style="color:blue; text-decoration:none">Output
The output consists of c lines, one line for each case, containing the word possible if it is indeed possible to go back in time indefinitely, or not possible if this is not possible with the given set of star systems and wormholes.
cid=84319" style="color:blue; text-decoration:none">Sample Input
- 2
- 3 3
- 0 1 1000
- 1 2 15
- 2 1 -42
- 4 4
- 0 1 10
- 1 2 20
- 2 3 30
- 3 0 -60
Sample Output
- possible
- not possible
Miguel A. Revilla
1998-03-10
题意:问能否通过虫洞,回到过去,意思实际上就是求,最短路里面有不有负环。
思路:SPFA 或者Bellman-ford 推断下有不有负环就能够了,对于SPFA,假设有负环,表明进栈次数大于等于n次。
- #include <iostream>
- #include <stdio.h>
- #include <string>
- #include <cstring>
- #include <algorithm>
- #include <cmath>
- #include <queue>
- #define INF 9999999
- using namespace std;
- int n,m;
- int num[2222];
- int dis[2222];
- int vis[2222];
- int f[2222];
- int u[2222],v[2222],w[2222],next[2222];
- int spfa()
- {
- queue<int>q;
- memset(vis,0,sizeof vis);
- memset(num,0,sizeof num);
- for(int i=0;i<=n;i++) dis[i]=INF;
- dis[0]=0;
- q.push(0);
- num[0]++;
- while(!q.empty())
- {
- int x=q.front(); q.pop();
- vis[x]=0;
- for(int i=f[x];i!=-1;i=next[i])
- if(dis[x]+w[i]<dis[v[i]])
- {
- dis[v[i]]=dis[x]+w[i];
- if(vis[v[i]]==0)
- {
- vis[v[i]]=1;
- q.push(v[i]);
- num[v[i]]++;
- if(num[v[i]]>=n)
- return 1;
- }
- }
- }
- return 0;
- }
- int main()
- {
- int T;
- scanf("%d",&T);
- while(T--)
- {
- scanf("%d%d",&n,&m);
- memset(f,-1,sizeof f);
- for(int i=0;i<m;i++)
- {
- scanf("%d%d%d",&u[i],&v[i],&w[i]);
- next[i]=f[u[i]];f[u[i]]=i;
- }
- if(spfa()==0)
- puts("not possible");
- else
- puts("possible");
- }
- return 0;
- }
- /*
- 5 4
- 1 2 1
- 1 3 2
- 2 4 3
- 2 5 2
- */
uva558 Wormholes SPFA 求是否存在负环的更多相关文章
- POJ 1151 Wormholes spfa+反向建边+负环判断+链式前向星
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 49962 Accepted: 18421 Descr ...
- POJ3259 Wormholes —— spfa求负环
题目链接:http://poj.org/problem?id=3259 Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submis ...
- vijos1053 用spfa判断是否存在负环
MARK 用spfa判断是否存在负环 判断是否存在负环的方法有很多, 其中用spfa判断的方法是:如果存在一个点入栈两次,那么就存在负环. 细节想想确实是这样,按理来说是不存在入栈两次的如果边权值为正 ...
- poj 3259 Wormholes 【SPFA&&推断负环】
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 36852 Accepted: 13502 Descr ...
- spfa算法及判负环详解
spfa (Shortest Path Faster Algorithm) 是一种单源最短路径的算法,基于Bellman-Ford算法上由队列优化实现. 什么是Bellman_Ford,百度内 ...
- SPFA算法的判负环问题(BFS与DFS实现)
经过笔者的多次实践(失败),在此温馨提示:用SPFA判负环时一定要特别小心! 首先SPFA有BFS和DFS两种实现方式,两者的判负环方式也是不同的. BFS是用一个num数组,num[x] ...
- poj3259 Wormholes【Bellman-Ford或 SPFA判断是否有负环 】
题目链接:poj3259 Wormholes 题意:虫洞问题,有n个点,m条边为双向,还有w个虫洞(虫洞为单向,并且通过时间为倒流,即为负数),问你从任意某点走,能否穿越到之前. 贴个SPFA代码: ...
- (简单) POJ 3259 Wormholes,SPFA判断负环。
Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...
- POJ3259:Wormholes(spfa判负环)
Wormholes Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 68097 Accepted: 25374 题目链接: ...
随机推荐
- 【软件构造】第三章第五节 ADT和OOP中的等价性
第三章第五节 ADT和OOP中的等价性 在很多场景下,需要判定两个对象是否 “相等”,例如:判断某个Collection 中是否包含特定元素. ==和equals()有和区别?如何为自定义 ADT正确 ...
- There is no Action mapped for namespace [/] and action name [updateUser] associated with context path [].
在使用Struts2的时候,遇到了这个问题. 原因分析: 找不到指定的路径, 那么就是struts.xml的内容问题, 或者是struts.xml的文件位置存在问题. struts2默认是应该放在sr ...
- JavaEE-04 数据源配置
学习要点 JNDI 数据库连接池 完成新闻发布系统数据库连接池 JNDI 说明 JNDI(Java Naming and Directory Interface),中文翻译为Java命名与目录接口,是 ...
- delphi jinchengneicun
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Configuring_the_Memory_Manager https://docs.micros ...
- pytorch系列 -- 9 pytorch nn.init 中实现的初始化函数 uniform, normal, const, Xavier, He initialization
本文内容:1. Xavier 初始化2. nn.init 中各种初始化函数3. He 初始化 torch.init https://pytorch.org/docs/stable/nn.html#to ...
- SQL Server 删除表的默认值约束
首先查出字段的默认值约束名称,然后根据默认值约束名称删除默认值约束 ) select @constraintName = b.name from syscolumns a,sysobjects b w ...
- 使用html2canvas实现网页截图,并嵌入到PDF
使用html2canvas实现网页截图并嵌入到PDF 以前我们只能通过截图工具进行截取图像.这使得在业务生产中,变得越来越不方便.目前的浏览器功能越来越强大,H5也逐渐普及,浏览器也可以实现截图了.这 ...
- MySQL安装示例数据库
MySQL安装示例数据库 本文档演示如何下载及安装MySQL示例数据库sakila及employees数据库 1. 安装sakila数据库 1.1 下载sakila数据库 wget http://do ...
- xenserver tools 安装
mkdir -p /mnt/xtools mount /dev/cdrom /mnt/xtools cd /mnt/xtools/Linux/ ./install.sh -n init 6
- 如何用纯 CSS 创作条形图,不用任何图表库
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. 在线演示 https://codepen.io/zhang-ou/pen/XqzGLp 可交互视频教 ...