题目链接:http://poj.org/problem?id=1300

Door Man
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 2899   Accepted: 1176

Description

You are a butler in a large mansion. This mansion has so many rooms that they are merely referred to by number (room 0, 1, 2, 3, etc...). Your master is a particularly absent-minded lout and continually leaves doors open throughout a particular floor of the
house. Over the years, you have mastered the art of traveling in a single path through the sloppy rooms and closing the doors behind you. Your biggest problem is determining whether it is possible to find a path through the sloppy rooms where you:

  1. Always shut open doors behind you immediately after passing through
  2. Never open a closed door
  3. End up in your chambers (room 0) with all doors closed

In this problem, you are given a list of rooms and open doors between them (along with a starting room). It is not needed to determine a route, only if one is possible. 

Input

Input to this problem will consist of a (non-empty) series of up to 100 data sets. Each data set will be formatted according to the following description, and there will be no blank lines separating data sets. 

A single data set has 3 components:

  1. Start line - A single line, "START M N", where M indicates the butler's starting room, and N indicates the number of rooms in the house (1 <= N <= 20).
  2. Room list - A series of N lines. Each line lists, for a single room, every open door that leads to a room of higher number. For example, if room 3 had open doors to rooms 1, 5, and 7, the line for room 3 would read "5 7". The first line in the list represents
    room 0. The second line represents room 1, and so on until the last line, which represents room (N - 1). It is possible for lines to be empty (in particular, the last line will always be empty since it is the highest numbered room). On each line, the adjacent
    rooms are always listed in ascending order. It is possible for rooms to be connected by multiple doors!
  3. End line - A single line, "END"

Following the final data set will be a single line, "ENDOFINPUT". 



Note that there will be no more than 100 doors in any single data set.

Output

For each data set, there will be exactly one line of output. If it is possible for the butler (by following the rules in the introduction) to walk into his chambers and close the final open door behind him, print a line "YES X", where X is the number of doors
he closed. Otherwise, print "NO".

Sample Input

START 1 2
1 END
START 0 5
1 2 2 3 3 4 4 END
START 0 10
1 9
2
3
4
5
6
7
8
9 END
ENDOFINPUT

Sample Output

YES 1
NO
YES 10

题解:

典型的欧拉回路判定,输出YES的情况有两种(已知起点为m, 终点为0):

1.所有点的度数都为偶数,并且起点终点都为0。

2.有两个点的度数为奇数,其他都为偶数,并且这两个点为起点和终点。

欧拉回路:

首要条件:连通



无向图:

情况1:每个结点均为偶度结点。

情况2:有两个结点为奇度结点,其他结点均为偶度结点。



有向图:

情况1:每个结点的入度等于出度。

情况2:有一个结点入度等于出度+1,有一个结点出度等于入度+1,其他结点的入度等于出度。

代码如下:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const double EPS = 1e-6;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+7;
const int MAXN = 20+10; int n, m, deg[MAXN];
char str[100]; int main()
{
while(scanf("%s", str) && strcmp(str, "ENDOFINPUT"))
{
scanf("%d%d",&m, &n);
memset(deg, 0, sizeof(deg));
int ans = 0;
getchar();
for(int i = 0; i<n; i++)
{
gets(str);
for(int j = 0; j<strlen(str); j++)
{
if(str[j]==' ') continue;
ans++;
deg[i]++;
deg[str[j]-'0']++;
}
}
gets(str); int cnt = 0;
for(int i = 0; i<n; i++)
if(deg[i]&1) cnt++; if(cnt==0 && m==0) //没有奇点,则起点和终点都必须为0
printf("YES %d\n", ans);
else if(cnt==2 && m!=0 &&(deg[m]&1)&&(deg[0]&1) ) //有两个奇点, 则这两个奇点必须为起点和终点
printf("YES %d\n", ans);
else //奇点个数等于1或大于2,则不存在欧拉回路
printf("NO\n");
}
}

POJ1300 Door Man —— 欧拉回路(无向图)的更多相关文章

  1. hdoj 1878 欧拉回路(无向图欧拉回路+并查集)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1878 思路分析:该问题给定一个无向图,要求判断该无向图是否存在欧拉回路:无向图判断存在欧拉回路的两个必 ...

  2. 优先队列 + 并查集 + 字典树 + 欧拉回路 + 树状数组 + 线段树 + 线段树点更新 + KMP +AC自动机 + 扫描线

    这里给出基本思想和实现代码 . 优先队列 : 曾经做过的一道例题       坦克大战 struct node { int x,y,step; friend bool operator <(no ...

  3. NOIP模板总结

    NOIP模板总结 进考场先打一份缺省源: # include <cstdio> # include <iostream> # include <cstring> # ...

  4. Bridges

    Bridges 题目描述 YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛.现在YYD想骑单车从小岛 ...

  5. poj2513Colored Sticks(无向图的欧拉回路)

    /* 题意:将两端涂有颜色的木棒连在一起,并且连接处的颜色相同! 思路:将每一个单词看成一个节点,建立节点之间的无向图!判断是否是欧拉回路或者是欧拉路 并查集判通 + 奇度节点个数等于2或者0 */ ...

  6. POJ 1041 John's trip 无向图的【欧拉回路】路径输出

    欧拉回路第一题TVT 本题的一个小技巧在于: [建立一个存放点与边关系的邻接矩阵] 1.先判断是否存在欧拉路径 无向图: 欧拉回路:连通 + 所有定点的度为偶数 欧拉路径:连通 + 除源点和终点外都为 ...

  7. 暑假集训2016day3T1 欧拉回路(UOJ #117欧拉回路)(史上最全的欧拉回路纯无向图/有向图解析)

    原题……可惜不会……真是一只大蒟蒻…… ———————————————————————————————— 有一天一位灵魂画师画了一张图,现在要你找出欧拉回路,即在图中找一个环使得每条边都在环上出现恰好 ...

  8. hdu 1878 无向图的欧拉回路

    原题链接 hdu1878 大致题意: 欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个无向图,问是否存在欧拉回路? 思路: 无向图存在欧拉回路的条件:1.图是连 ...

  9. UVA10054-The Necklace(无向图欧拉回路——套圈算法)

    Problem UVA10054-The Necklace Time Limit: 3000 mSec Problem Description Input The input contains T t ...

随机推荐

  1. uva 11178二维几何(点与直线、点积叉积)

    Problem D Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states tha ...

  2. net2:类,事件与委托

    原文发布时间为:2008-07-29 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...

  3. MySQL 中 key, primary key ,unique key,index的区别

    一.key与primary key区别 CREATE TABLE wh_logrecord ( logrecord_id int(11) NOT NULL auto_increment, user_n ...

  4. CentOS配置TFTP服务器

    服务器端 软件包 tftp-server 启动脚本 /usr/sbin/in.tftpd 启动服务 /usr/lib/systemd/system/tftp.service 配置文件 /etc/xin ...

  5. npm 安装vue-cli

    TIP:win10下安装,使用管理员身份进行,否则会有权限限制. 1,安装完成node,node有自带的npm,可以直接在cmd中,找到nodeJs安装的路径下,进行命令行全局安装vue-cli.(n ...

  6. codevs——1228 苹果树

    1228 苹果树  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在卡卡的房子外面,有一棵 ...

  7. HDFS api操作

    import java.net.URI;import java.util.Iterator;import java.util.Map.Entry; import org.apache.hadoop.c ...

  8. iOS 读书笔记 第一章

    1.确定某个实例或类方法是否可用. 1)使用NSObject的类方法instancesRespondToSelector:来确定是否在该类的一个实例中存在一个特定的选择器. NSArray *arra ...

  9. 【Java TCP/IP Socket】基于NIO的TCP通信(含代码)

    NIO主要原理及使用 NIO采取通道(Channel)和缓冲区(Buffer)来传输和保存数据,它是非阻塞式的I/O,即在等待连接.读写数据(这些都是在一线程以客户端的程序中会阻塞线程的操作)的时候, ...

  10. Java 5/Java 6/Java7/Java 8新特性收集

    前言: Java 8对应的JDK版本为JDK8,而官网下载回来安装的时候,文件夹上写的是JDK1.8,同一个意思.(而这个版本命名也是有规律的,以此类推) 一.Java 5 1.https://seg ...