[POI2008]CLO
Description
Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个town都有且只有一个入度
Input
第一行输入n m.1 <= n<= 100000,1 <= m <= 200000 下面M行用于描述M条边.
Output
TAK或者NIE 常做POI的同学,应该知道这两个单词的了...
Sample Input
4 5
1 2
2 3
1 3
3 4
1 4
Sample Output
TAK
HINT
上图给出了一种连接方式.
这题可以把边删掉……也就是直接忽略一些边……
那就直接判断,有树就不可行,否则就可行,点也算树。并查集维护一波
/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
int fa[N+10];
bool can[N+10];
int find(int x){
if (fa[x]==x) return x;
fa[x]=find(fa[x]);
return fa[x];
}
int main(){
int n=read(),m=read();
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++){
int x=find(read()),y=find(read());
x!=y?(fa[x]=y,can[y]|=can[x]):can[fa[x]]=1;
}
for (int i=1;i<=n;i++) if (!can[find(i)]){printf("NIE\n");return 0;}
printf("TAK\n");
return 0;
}
[POI2008]CLO的更多相关文章
- BZOJ 1116: [POI2008]CLO
1116: [POI2008]CLO Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 922 Solved: 514[Submit][Status][ ...
- BZOJ1116: [POI2008]CLO
1116: [POI2008]CLO Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 565 Solved: 303[Submit][Status] ...
- 1116: [POI2008]CLO
1116: [POI2008]CLO https://lydsy.com/JudgeOnline/problem.php?id=1116 分析: 单独考虑每个联通块的情况. 设这个联通块里有n个点,那 ...
- 【BZOJ1116】[POI2008]CLO 并查集
[BZOJ1116][POI2008]CLO Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. ...
- BZOJ 1116: [POI2008]CLO [连通分量]
Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个town都有且只有一个入度 ...
- bzoj1116 [POI2008]CLO 边双联通分量
只需对每个联通块的$dfs$树检查有没有返租边即可 复杂度$O(n + m)$ #include <cstdio> #include <cstring> using names ...
- BZOJ1116:[POI2008]CLO(并查集)
Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个t ...
- BZOJ 1116 [POI2008]CLO(并查集)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1116 [题目大意] Byteotia城市有n个towns,m条双向roads.每条ro ...
- BZOJ1116:[POI2008]CLO
浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php? ...
- BZOJ 1116: [POI2008]CLO 并查集
成立时当且仅当每个联通块都有环存在.一个连通块若有m个点,则必有多于m条有向边,可用并查集来维护. #include<cstdio> #include<iostream> #d ...
随机推荐
- Java的条件判断
以下内容引用自http://wiki.jikexueyuan.com/project/java/decision-making.html: 在 Java中有两种类型的条件判断语句,它们分别是: if语 ...
- 关于maven多个模块的build顺序 [INFO] Reactor Build Order
对于一个maven项目,如果有多个模块,那么它们的执行顺序是什么样的呢? 在执行mvn操作的时候,你可以看到如下信息,这个便是maven的build顺序 那么maven是如何决定顺序的呢?如下: 在多 ...
- 深度学习综述(LeCun、Bengio和Hinton)
原文摘要:深度学习可以让那些拥有多个处理层的计算模型来学习具有多层次抽象的数据的表示.这些方法在很多方面都带来了显著的改善,包含最先进的语音识别.视觉对象识别.对象检測和很多其他领域,比如药物发现和基 ...
- Meteor ToDo App实例
在本章中,我们将创建一个简单的待办事项应用程序. 第1步 - 创建应用程序 打开命令提示符,运行以下命令 - C:\Users\Administrator\Desktop>meteor crea ...
- 《javascript设计模式》读书笔记二(封装和隐藏信息)
1.为什么要封装和信息隐藏 做过编程的朋友们知道"耦合"这个词.事实上封装的效果就是为了解耦,让类和类之间没有太多的联系,防止某一天改动某一类的时候,产生"多米骨诺牌效应 ...
- [转]linux下tar.gz、tar、bz2、zip等解压缩、压缩命令小结
原文:http://www.jb51.net/LINUXjishu/43356.html ------------------------------------------------------- ...
- URL编码总结
URL编码总结 URL是Universal Resource Locator的简称.翻译过来那就是统一资源定位符,好吧,我们常常会俗称为网页地址. 一个URL的格式一般是这种:协议 ...
- 分享一个基于Bootstrap的 ACE框架 入门(MVC+EF)
基于Bootstrap3,拥有强大的功能组件以及UI组件,基本能满足后台管理系统的需求, 而且能根据不同设备适配显示,而且还有四个主题可以切换. 简单入门,源代码下载:https://github.c ...
- YTU 2852: 二分查找
2852: 二分查找 时间限制: 1 Sec 内存限制: 128 MB 提交: 215 解决: 79 题目描述 输入不多于20个升序排列的整数,以及一个待查找的数key,输出key在序列中的位置( ...
- 洛谷P3778 [APIO2017]商旅——01分数规划
题目:https://www.luogu.org/problemnew/show/P3778 转化有点技巧: 其实直接关注比率的上下两项,也就是盈利和时间: 通过暴枚和 floyd 可以处理出两两点间 ...