Description

Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个town都有且只有一个入度

Input

第一行输入n m.1 <= n<= 100000,1 <= m <= 200000 下面M行用于描述M条边.

Output

TAK或者NIE 常做POI的同学,应该知道这两个单词的了...

Sample Input

4 5

1 2

2 3

1 3

3 4

1 4

Sample Output

TAK

HINT



上图给出了一种连接方式.


这题可以把边删掉……也就是直接忽略一些边……

那就直接判断,有树就不可行,否则就可行,点也算树。并查集维护一波

/*program from Wolfycz*/
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define inf 0x7f7f7f7f
using namespace std;
typedef long long ll;
typedef unsigned int ui;
typedef unsigned long long ull;
inline int read(){
int x=0,f=1;char ch=getchar();
for (;ch<'0'||ch>'9';ch=getchar()) if (ch=='-') f=-1;
for (;ch>='0'&&ch<='9';ch=getchar()) x=(x<<1)+(x<<3)+ch-'0';
return x*f;
}
inline void print(int x){
if (x>=10) print(x/10);
putchar(x%10+'0');
}
const int N=1e5;
int fa[N+10];
bool can[N+10];
int find(int x){
if (fa[x]==x) return x;
fa[x]=find(fa[x]);
return fa[x];
}
int main(){
int n=read(),m=read();
for (int i=1;i<=n;i++) fa[i]=i;
for (int i=1;i<=m;i++){
int x=find(read()),y=find(read());
x!=y?(fa[x]=y,can[y]|=can[x]):can[fa[x]]=1;
}
for (int i=1;i<=n;i++) if (!can[find(i)]){printf("NIE\n");return 0;}
printf("TAK\n");
return 0;
}

[POI2008]CLO的更多相关文章

  1. BZOJ 1116: [POI2008]CLO

    1116: [POI2008]CLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 922  Solved: 514[Submit][Status][ ...

  2. BZOJ1116: [POI2008]CLO

    1116: [POI2008]CLO Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 565  Solved: 303[Submit][Status] ...

  3. 1116: [POI2008]CLO

    1116: [POI2008]CLO https://lydsy.com/JudgeOnline/problem.php?id=1116 分析: 单独考虑每个联通块的情况. 设这个联通块里有n个点,那 ...

  4. 【BZOJ1116】[POI2008]CLO 并查集

    [BZOJ1116][POI2008]CLO Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. ...

  5. BZOJ 1116: [POI2008]CLO [连通分量]

    Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个town都有且只有一个入度 ...

  6. bzoj1116 [POI2008]CLO 边双联通分量

    只需对每个联通块的$dfs$树检查有没有返租边即可 复杂度$O(n + m)$ #include <cstdio> #include <cstring> using names ...

  7. BZOJ1116:[POI2008]CLO(并查集)

    Description Byteotia城市有n个 towns m条双向roads. 每条 road 连接 两个不同的 towns ,没有重复的road. 你要把其中一些road变成单向边使得:每个t ...

  8. BZOJ 1116 [POI2008]CLO(并查集)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1116 [题目大意] Byteotia城市有n个towns,m条双向roads.每条ro ...

  9. BZOJ1116:[POI2008]CLO

    浅谈并查集:https://www.cnblogs.com/AKMer/p/10360090.html 题目传送门:https://lydsy.com/JudgeOnline/problem.php? ...

  10. BZOJ 1116: [POI2008]CLO 并查集

    成立时当且仅当每个联通块都有环存在.一个连通块若有m个点,则必有多于m条有向边,可用并查集来维护. #include<cstdio> #include<iostream> #d ...

随机推荐

  1. DTrace scripts for Mac OS X

    http://www.cnblogs.com/Proteas/p/3727297.html http://dtrace.org/blogs/brendan/2011/10/10/top-10-dtra ...

  2. 关于maven多个模块的build顺序 [INFO] Reactor Build Order

    对于一个maven项目,如果有多个模块,那么它们的执行顺序是什么样的呢? 在执行mvn操作的时候,你可以看到如下信息,这个便是maven的build顺序 那么maven是如何决定顺序的呢?如下: 在多 ...

  3. IOS开发 序列化与反序列化

    原帖地址:http://blog.csdn.net/ally_ideveloper/article/details/7956942 不会用,记下自己有时间看 序列化与反序列化概述 序列化,它又称串行化 ...

  4. linux设备驱动归纳总结

    前言: (总结已经基本写完,这段时间我会从新排版和修正.错误总会有的,望能指正!) 前段时间学习了嵌入式驱动,趁着没开始找工作,这段时间我会每天抽出时间来复习. 我的总结是根据学习时的笔记(李杨老师授 ...

  5. ext.net 2.5 导出excel的使用方法

    前台页面的导入,导出 <ext:FileUploadField ID="FileUploadField_Import" runat="server" Bu ...

  6. MySQL基础笔记(一) SQL简介+数据类型

    MySQL是一个关系型数据库管理系统(RDBMS),它是当前最流行的 RDBMS 之一.MySQL分为社区版和企业版,由于其体积小.速度快.总体拥有成本低,尤其是开放源码这一特点,一般中小型网站的开发 ...

  7. Scrum 常见错误实践 之 过长的站会

    站会看起来很简单,在实践过程中,却经常会出现控制不当而导致达不到应用效果的状况.我只是结合自己的一些过往经历作一些浅显的总结. 一个很常见的就是站会拖得太长. 一般来说站会不应该超过15分钟,每个人应 ...

  8. 配置pydot环境

    第一次配置pydot环境,过程还是比較曲折,看来对这样的模式还不是非常熟悉.断断续续弄了两天弄好了.都是些小要求,小细节问题. 安装的顺序也非常重要: 1.安装python-2.7.8.amd64.m ...

  9. 【bzoj1015】【JSOI2008】【星球大战】【并查集+离线】

    Description 非常久曾经.在一个遥远的星系,一个黑暗的帝国靠着它的超级武器统治者整个星系.某一天,凭着一个偶然的机遇,一支反抗军摧毁了帝国的超级武器.并攻下了星系中差点儿全部的星球.这些星球 ...

  10. 搭建基于Maven的SSM框架

    先展示文件结构图对工程结构有大致了解: 主要为  ssm-parent (用来管理jar包版本)是每个工程的父工程,ssm-common(用来处理底层数据),ssm-manager(对数据库信息进行操 ...