转载自hr_whisper大佬的博客

[

一、Dijkstra

比较详细的迪杰斯特拉算法讲解传送门

Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路。所以Dijkstra常常作为其他算法的预处理。

使用邻接矩阵的时间复杂度为O(n^2),用优先队列的复杂度为O((m+n)logn)近似为O(mlogn)

(一) 过程

每次选择一个未访问过的到已经访问过(标记为Known)的所有点的集合的最短边,并用这个点进行更新,过程如下:

Dv为最短路,而Pv为前面的顶点。

  1. 初始

  2. 在v1被标记为已知后的表

  3. 下一步选取v4并且标记为known,顶点v3,v5,v6,v7是邻接的顶点,而他们实际上都需要调整。如表所示:

  4. 接下来选取v2,v4是邻接点,但已经是known的,不需要调整,v5是邻接的点但不做调整,因为经过v2的值为2+10=12而长为3的路径已经是已知的。

  5. 接下来选取v5,值为3,v7 3+6>5不需调整,然后选取v3,对v6的距离下调到3+5=8

  6. 再选下一个顶点是v7,v6变为5+1=6

  7. 最后选取v6

(二) 局限性

Dijkstra没办法解决负边权的最短路径,如图

运行完该算法后,从顶点1到顶点3的最短路径为1,3,其长度为1,而实际上最短路径为1,2,3,其长度为0.(因为过程中先选择v3,v3被标记为已知,今后不再更新)

(三) 算法实现。

1.普通的邻接表 以(HDU 1874 畅通工程续 SPFA || dijkstra)为例

用vis作为上面标记的known,dis记录最短距离(记得初始化为一个很大的数)。

(1)Dijkstra+邻接矩阵

#include<cstdio>
#include<cstring>
const int MAXN=200+10;
const int INF=1000000;
int n,m,map[MAXN][MAXN],dis[MAXN];
bool vis[MAXN]; void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
int cur=s;
dis[cur]=0;
vis[cur]=1;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
if(!vis[j] && dis[cur] + map[cur][j] < dis[j])
dis[j]=dis[cur] + map[cur][j] ; int mini=INF;
for(int j=0;j<n;j++)
if(!vis[j] && dis[j] < mini)
mini=dis[cur=j];
vis[cur]=true;
} }
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
{
dis[i]=INF;
for(int j=0;j<n;j++)
map[i][j]=INF;
}
for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
if(map[from][to] > val)
map[to][from]=map[from][to]=val;
}
int s,t;
scanf("%d%d",&s,&t);
dijkstra(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0; }

(2)Dijkstra+优先队列

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=200+10;
const int MAXM=40000+10;
const int INF=1000000;
int n,m,dis[MAXN],head[MAXN],len;
bool vis[MAXN]; struct edge
{
int to,val,next;
}e[MAXM]; void add(int from,int to,int val)
{
e[len].to=to;
e[len].val=val;
e[len].next=head[from];
head[from]=len++;
}
struct point
{
int val,id;
point(int id,int val):id(id),val(val){}
bool operator <(const point &x)const{
return val>x.val;
}
};
void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
dis[i]=INF; priority_queue<point> q;
q.push(point(s,0));
dis[s]=0;
while(!q.empty())
{
int cur=q.top().id;
q.pop();
if(vis[cur]) continue;
vis[cur]=true;
for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(!vis[id] && dis[cur]+e[i].val < dis[id])
{
dis[id]=dis[cur]+e[i].val;
q.push(point(id,dis[id]));
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
len=0;
memset(head,-1,sizeof(head)); for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
add(from,to,val);
add(to,from,val);
} int s,t;
scanf("%d%d",&s,&t);
dijkstra(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0; }

二、SPFA(bellman-ford)

(一)原理过程

关于SPFA算法详细介绍传送门

(二)实现

1.邻接矩阵的SPFA以(HDU 1874 畅通工程续 SPFA || dijkstra)为例:

#include<cstdio>
#include<queue>
using namespace std;
const int INF=1000000;
const int MAXN=200+10;
int n,m;
int map[MAXN][MAXN];
int dis[MAXN];
void SPFA(int s)
{
for(int i=0;i<n;i++)
dis[i]=INF; bool vis[MAXN]={0}; vis[s]=true;
dis[s]=0; queue<int> q;
q.push(s);
while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false;
for(int i=0;i<n;i++)
{
if(dis[cur] + map[cur][i] < dis[i])
{
dis[i]=dis[cur] + map[cur][i];
if(!vis[i])
{
q.push(i);
vis[i]=true;
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
map[i][j]=INF; for(int i=0;i<m;i++)
{
int from,to,dis;
scanf("%d%d%d",&from,&to,&dis);
if(map[from][to]>dis)
map[from][to]=map[to][from]=dis;
}
int s,t;
scanf("%d%d",&s,&t);
SPFA(s);
if(dis[t]==INF)
puts("-1");
else
printf("%d\n",dis[t]);
}
return 0;
}

2.SPFA+邻接表

#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=200+10;
const int MAXM=40000+10;
const int INF=1000000;
int n,m,dis[MAXN],head[MAXN],len;
bool vis[MAXN]; struct edge
{
int to,val,next;
}e[MAXM]; void add(int from,int to,int val)
{
e[len].to=to;
e[len].val=val;
e[len].next=head[from];
head[from]=len++;
}
void spfa(int s)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
dis[i]=INF; queue<int> q;
q.push(s);
vis[s]=true;
dis[s]=0;
while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false;
for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(dis[id] > dis[cur]+e[i].val)
{
dis[id] = dis[cur] + e[i].val;
if(!vis[id])
{
vis[id]=true;
q.push(id);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
len=0;
memset(head,-1,sizeof(head)); for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
add(from,to,val);
add(to,from,val);
} int s,t;
scanf("%d%d",&s,&t);
spfa(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0; }

三、Floyd

全称Floyd-Warshall。记得离散数学里面有Warshall算法,用来计算传递闭包。而数据结构每次都简称floyd,当时就觉得两个都差不多,有神马关系,后来google一下发现是同一个算法。。。。改个名字出来走江湖啊!!!!!

这个算法用于求所有点对的最短距离。比调用n次dijkstra的优点在于代码简单。

(一)原理过程

这是一个dp(动态规划的过程)

dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);

即从顶点i到j且经过顶点k的最短路径长度。

(二)实现

以(HDU 1874 畅通工程续 SPFA || dijkstra)为例

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=200+10;
const int INF=1000000;
int n,m,dis[MAXN][MAXN]; void floyd()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=INF; for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
if(dis[from][to] > val)
dis[to][from]=dis[from][to]=val;
}
int s,t;
scanf("%d%d",&s,&t);
if(s==t)
{
printf("0\n");
continue;
}
floyd();
if(dis[s][t]==INF)
printf("-1\n");
else
printf("%d\n",dis[s][t]);
}
return 0; }

如走迷宫经常用的BFS,以一个点出发,向外扩散。

如:

UVA 10047 - TheMonocycle BFS

HDU 1728逃离迷宫 BFS

POJ3984迷宫问题 BFS

UVA 11624 - Fire!图BFS

除了上面的

HDU 1874畅通工程续 SPFA || dijkstra||floyd

还有:

UVA11280 - Flying to Fredericton SPFA变形

UVA11090 - Going in Cycle!! SPFA

UVA10917 Walk Through the Forest SPFA

POJ 3259Wormholes邻接表的SPFA判断负权回路

POJ 1932XYZZY (ZOJ 1935)SPFA+floyd

UVA11374 Airport Express SPFA||dijkstra

UVA11367 - Full Tank? dijkstra+DP

POJ 1511Invitation Cards (ZOJ 2008)使用优先队列的dijkstra

POJ 3268Silver Cow Party (Dijkstra~)

POJ 2387Til the Cows Come Home (Dijkstra)

UVA10603 - Fill BFS~

1.1.1最短路(Floyd、Dijstra、BellmanFord)的更多相关文章

  1. 最短路(floyd/dijkstra/bellmanford/spaf 模板)

    floyd/dijkstra/bellmanford/spaf 模板: 1. floyd(不能处理负权环,时间复杂度为O(n^3), 空间复杂度为O(n^2)) floyd算法的本质是dp,用dp[k ...

  2. hdu-2544-最短路(Floyd算法模板)

    题目链接 题意很清晰,入门级题目,适合各种模板,可用dijkstra, floyd, Bellman-ford, spfa Dijkstra链接 Floyd链接 Bellman-Ford链接 SPFA ...

  3. ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)

    这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...

  4. 模板C++ 03图论算法 2最短路之全源最短路(Floyd)

    3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...

  5. 最短路 - floyd算法

    floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...

  6. HDU1869---(最短路+floyd)

    http://acm.hdu.edu.cn/showproblem.php?pid=1869 思路:最短路+floyd 分析:1 题目是要求所有的数据能否满足“六度分离”,那么我们就想到所有点之间的最 ...

  7. 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...

  8. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  9. 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)

    几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3).       Floyd-Warshall算法(Floyd ...

  10. (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍

    这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...

随机推荐

  1. 2016.3.15__H5页面实战__第七天

    假设您认为这篇文章还不错,能够去H5专题介绍中查看很多其它相关文章. 个人简书地址: dhttp://www.jianshu.com/users/5a2fd0b8fb30/latest_article ...

  2. Client使用c#和odp.net连接server oracle

    http://blog.csdn.net/educast/article/details/6605655 Oracle.DataAccess.dll有2.X版本和4.X版本,VS2008开发用2.X ...

  3. MySQL学习系列之触发器

    触发器简介 触发器作用: 监控某种事件并触发某种动作 触发语法: CREATE TRIGGER trigger_name trigger_event ON tbl_name FOR EACH ROW ...

  4. awk基本使用方法简单介绍

    之前说过sed, 今天来说awk, 它也是一个文本处理器. 是linux下的一个命令, 比sed更强大. 搞linux开发, 尤其是后台开发, 这个命令差点儿必需要用到. awk这三个字母分别代表其三 ...

  5. 【iOS-Tips】-小贴士

    [iOS-Tips]-小贴士 1:UIImage的2种加载方式: 方式一:有缓存(图片所占用的内存会一直停留在程序中) //name是图片的文件名 + (UIImage *)imageNamed:(N ...

  6. XML中的CDATA是什么?PCDATA是什么?

    PCDATA表示已解析的字符数据. 在CDATA内部的所有内容都会被解析器忽略.

  7. jdk 版本不一致导致的错误

    平时做项目时难免会从git,svn下载代码或者把别人的项目文件导入到自己的MyEclipse中进行操作,因此会遇到很多问题,常见的有一种是使用的jdk版本不一致造成的报错, 错误案例:     错误提 ...

  8. Mac mysql 运行sql文件中文乱码的问题

    别再傻傻的改什么mysql的编码格式了. 是.sql文件的编码有问题,把sql文件的编码格式改成utf-8就行了. mac怎么修改呢? vscode最爽了. 用vscode打开.sql文件,然后点右下 ...

  9. oracle中的sys用户(修改密码)/////Oracle删除表空间的同时删除数据文件 ///// Oracle中如何保证用户只有一个session登录

    oracle中的sys用户(修改密码) (2011-07-01 09:18:11) 转载▼ 标签: it 分类: oracle 概念: SYS用户是Oracle中权限最高的用户,而SYSTEM是一个用 ...

  10. Java String 和 new String()的区别

    Java String 和 new String()的区别 本文转自:http://www.cnblogs.com/heima-jieqi/archive/2012/04/10/2440086.htm ...