\(\mathcal{Description}\)

  Link.

  给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子。两人博弈,轮流移动其中一枚棋子到邻接结点位置,无法移动者负。求 \(2^m\) 个边集中,加入图中能使先手必胜的方案数。答案对 \(10^9+7\) 取模。

  \(n\le15\)。

\(\mathcal{Solution}\)

  先从博弈角度思考:两枚棋子显然独立,那么先手必胜等价于 \(\operatorname{sg}(1)\not=\operatorname{sg}(2)\),其中,\(\operatorname{sg}\) 有

\[\operatorname{sg}(u)=\operatorname{mex}_{v\in\operatorname{adj}(u)}\operatorname{sg}(v)
\]

在不同边集的情况中,\(\operatorname{adj}(u)\) 有所改变,所以情况不同。

  接下来,方便起见,尝试计数 \(\operatorname{sg}(1)=\operatorname{sg}(2)\) 的情况。令 \(f(S)~(1,2\in S)\) 表示仅考虑点集 \(S\) 的导出子图时,\(\operatorname{sg}(1)=\operatorname{sg}(2)\) 的方案数。而 DP 中的“子问题”源于 \(\operatorname{sg}\) 函数中 \(\operatorname{mex}\) 的定义——如果我们挑除所有 \(\operatorname{sg}(u)=0\) 的 \(u\)(一定存在)及其邻接边,剩下的子图仍然是同类问题,只是所有 \(\operatorname{sg}\) 值减少 \(1\),不影响 DP 定义,这就是转移的雏形。具体地,枚举点集 \(T\subseteq S\),钦定其中所有点的 \(\operatorname{sg}\) 非 \(0\),考虑:

  • \(1,2\in T\),\(T\) 中每个点至少连向一个 \(S-T\) 中的点,其余边任意(注意 \(T\) 中的边是子问题,不考虑)。

  • \(1,2\not\in T\),已经满足条件,在上种情况的基础上加上 \(T\) 中边任选的方案,直接贡献。

  综上,复杂度 \(\mathcal O(3^nn)\)。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i ) const int MAXN = 15, MAXM = MAXN * ( MAXN - 1 ) >> 1, MOD = 1e9 + 7;
int n, m, pwr[MAXM + 5], conc[1 << MAXN][MAXN], f[1 << MAXN];
bool adj[MAXN + 5][MAXN + 5]; inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); } int main() {
scanf( "%d %d", &n, &m ), pwr[0] = 1;
rep ( i, 1, m ) {
pwr[i] = add( pwr[i - 1], pwr[i - 1] );
int u, v; scanf( "%d %d", &u, &v );
adj[u - 1][v - 1] = true;
} rep ( S, 1, ( 1 << n ) - 1 ) {
int v = 0; for ( ; !( S >> v & 1 ); ++v );
rep ( u, 0, n - 1 ) conc[S][u] = conc[S ^ 1 << v][u] + adj[u][v];
} rep ( S, 0, ( 1 << n ) - 1 ) if ( ( S & 3 ) == 3 ) {
f[S] = 1;
for ( int T = S & ( S - 1 ); T; T = ( T - 1 ) & S ) {
if ( T & 1 && T & 2 ) {
int coe = 1;
rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
if ( T >> u & 1 ) {
coe = mul( coe, pwr[conc[S ^ T][u]] - 1 );
} else {
coe = mul( coe, pwr[conc[T][u]] );
}
}
addeq( f[S], mul( coe, f[T] ) );
} else if ( !( T & 1 || T & 2 ) ) {
int coe = 1;
rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
if ( T >> u & 1 ) {
coe = mul( coe,
mul( pwr[conc[S ^ T][u]] - 1, pwr[conc[T][u]] ) );
} else {
coe = mul( coe, pwr[conc[T][u]] );
}
}
addeq( f[S], coe );
}
}
} printf( "%d\n", sub( pwr[m], f[( 1 << n ) - 1] ) );
return 0;
}

Solution -「AGC 016F」Games on DAG的更多相关文章

  1. Solution -「AGC 036D」「AT 5147」Negative Cycle

    \(\mathcal{Descriprtion}\)   Link.   在一个含 \(n\) 个结点的有向图中,存在边 \(\lang i,i+1,0\rang\),它们不能被删除:还有边 \(\l ...

  2. Solution -「AGC 026D」Histogram Coloring

    \(\mathcal{Description}\)   Link.   有 \(n\) 列下底对齐的方格纸排成一行,第 \(i\) 列有 \(h_i\) 个方格.将每个方格染成黑色或白色,求使得任意完 ...

  3. Solution -「AGC 004E」「AT 2045」Salvage Robots

    \(\mathcal{Description}\)   Link.   有一个 \(n\times m\) 的网格.每个格子要么是空的,要么有一个机器人,要么是一个出口(仅有一个).每次可以命令所有机 ...

  4. Solution -「AGC 012F」「AT 2366」Prefix Median

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_{2n-1}\}\),将 \(\{a_{2n-1}\}\) 按任意顺序排列后,令序列 \(b_i\) 为前 ...

  5. Solution -「AGC 010C」「AT 2304」Cleaning

    \(\mathcal{Description}\)   Link.   给定一棵 \(n\) 个点的无根树,点有点权,每次选择两个不同的叶子,使它们间的简单路径的所有点权 \(-1\),问能否将所有点 ...

  6. Solution -「AGC 019E」「AT 2704」Shuffle and Swap

    \(\mathcal{Description}\)   Link.   给定 \(01\) 序列 \(\{A_n\}\) 和 \(\{B_n\}\),其中 \(1\) 的个数均为 \(k\).记 \( ...

  7. Solution -「AGC 019F」「AT 2705」Yes or No

    \(\mathcal{Description}\)   Link.   有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no.每次你需要回答一个问题,然后得知这个 ...

  8. Solution -「AGC 013E」「AT 2371」Placing Squares

    \(\mathcal{Description}\)   Link.   给定一个长度为 \(n\) 的木板,木板上有 \(m\) 个标记点,第 \(i\) 个标记点距离木板左端点的距离为 \(x_i\ ...

  9. Solution -「AGC 003D」「AT 2004」Anticube

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个数 \(a_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数.   \(n\le10^5\) ...

随机推荐

  1. spring boot --- 注解 @Bean 和@Component

    1.前言 @Bean是给方法注册bean @Component是给不好归类的类注册bean 2.可以达到一样的效果 (1)@Component 直接注册即可 完整源码 package com.exam ...

  2. 局域网内部怎么安全接入U盘?

    准备工具: 内部专用U盘一个: 能连接外网的电脑(暂称"安全机")一个. 第一.安全机上安装360杀毒.360安全卫士或其它安全软件.并经常更新病毒库.木马库. 第二.外来U盘先通 ...

  3. 基于Appium的APP自动化测试基础--美团APP的实例

    转:https://blog.csdn.net/Tigerdong1/article/details/80159156 前段时间用一种流行语言,一个主流工具,一个实用框架,写了一个美团app自动化测试 ...

  4. Solon Web 开发,六、过滤器、处理、拦截器

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  5. Solon Web 开发,七、视图模板与Mvc注解

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  6. flask中错误使用flask.redirect('/path')导致的框架奇怪错误

    我在首页的位置使用了如下代码: import flask @page_index.route('/') def index(): flask.redirect('/pythoncgi/') 结果站点出 ...

  7. 用Win +R运行快速启动各种程序

    许多人认为Windows的Win+R运行就是摆设,除了开cmd和shutdown外毫无用处.其实Win+R是可以用于各种快捷启动的. Win+R可以视作执行一条cmd命令,要用他运行程序,理论上必须输 ...

  8. vue学习3-VSCode添加自定义代码片段

    1. ctrl+shift+p:打开命令行窗口. 2. 搜索snippets关键字.选择Preferenece:Configure User Snippets 3. 选择html.json,打开这个文 ...

  9. 学习OAuth 2.0

    认识OAuth 2.0 OAuth 2.0 是行业标准的授权协议. OAuth 2.0 专注于客户端开发人员的简单性,同时为 Web 应用程序.桌面应用程序.移动设备提供特定的授权流程. 应用场景 有 ...

  10. Maven生命周期,插件,单元测试junit

    maven生命周期,maven命令,maven插件 maven生命周期:就是maven构建项目的过程,清理,编译,测试,报告,打包,安装,部署 maven命令:maven独立使用,通过命令,完成mav ...