Solution -「AGC 016F」Games on DAG
\(\mathcal{Description}\)
Link.
给定一个含 \(n\) 个点 \(m\) 条边的 DAG,有两枚初始在 1 号点和 2 号点的棋子。两人博弈,轮流移动其中一枚棋子到邻接结点位置,无法移动者负。求 \(2^m\) 个边集中,加入图中能使先手必胜的方案数。答案对 \(10^9+7\) 取模。
\(n\le15\)。
\(\mathcal{Solution}\)
先从博弈角度思考:两枚棋子显然独立,那么先手必胜等价于 \(\operatorname{sg}(1)\not=\operatorname{sg}(2)\),其中,\(\operatorname{sg}\) 有
\]
在不同边集的情况中,\(\operatorname{adj}(u)\) 有所改变,所以情况不同。
接下来,方便起见,尝试计数 \(\operatorname{sg}(1)=\operatorname{sg}(2)\) 的情况。令 \(f(S)~(1,2\in S)\) 表示仅考虑点集 \(S\) 的导出子图时,\(\operatorname{sg}(1)=\operatorname{sg}(2)\) 的方案数。而 DP 中的“子问题”源于 \(\operatorname{sg}\) 函数中 \(\operatorname{mex}\) 的定义——如果我们挑除所有 \(\operatorname{sg}(u)=0\) 的 \(u\)(一定存在)及其邻接边,剩下的子图仍然是同类问题,只是所有 \(\operatorname{sg}\) 值减少 \(1\),不影响 DP 定义,这就是转移的雏形。具体地,枚举点集 \(T\subseteq S\),钦定其中所有点的 \(\operatorname{sg}\) 非 \(0\),考虑:
\(1,2\in T\),\(T\) 中每个点至少连向一个 \(S-T\) 中的点,其余边任意(注意 \(T\) 中的边是子问题,不考虑)。
\(1,2\not\in T\),已经满足条件,在上种情况的基础上加上 \(T\) 中边任选的方案,直接贡献。
综上,复杂度 \(\mathcal O(3^nn)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, repEnd##i = r; i <= repEnd##i; ++i )
#define per( i, r, l ) for ( int i = r, repEnd##i = l; i >= repEnd##i; --i )
const int MAXN = 15, MAXM = MAXN * ( MAXN - 1 ) >> 1, MOD = 1e9 + 7;
int n, m, pwr[MAXM + 5], conc[1 << MAXN][MAXN], f[1 << MAXN];
bool adj[MAXN + 5][MAXN + 5];
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
int main() {
scanf( "%d %d", &n, &m ), pwr[0] = 1;
rep ( i, 1, m ) {
pwr[i] = add( pwr[i - 1], pwr[i - 1] );
int u, v; scanf( "%d %d", &u, &v );
adj[u - 1][v - 1] = true;
}
rep ( S, 1, ( 1 << n ) - 1 ) {
int v = 0; for ( ; !( S >> v & 1 ); ++v );
rep ( u, 0, n - 1 ) conc[S][u] = conc[S ^ 1 << v][u] + adj[u][v];
}
rep ( S, 0, ( 1 << n ) - 1 ) if ( ( S & 3 ) == 3 ) {
f[S] = 1;
for ( int T = S & ( S - 1 ); T; T = ( T - 1 ) & S ) {
if ( T & 1 && T & 2 ) {
int coe = 1;
rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
if ( T >> u & 1 ) {
coe = mul( coe, pwr[conc[S ^ T][u]] - 1 );
} else {
coe = mul( coe, pwr[conc[T][u]] );
}
}
addeq( f[S], mul( coe, f[T] ) );
} else if ( !( T & 1 || T & 2 ) ) {
int coe = 1;
rep ( u, 0, n - 1 ) if ( S >> u & 1 ) {
if ( T >> u & 1 ) {
coe = mul( coe,
mul( pwr[conc[S ^ T][u]] - 1, pwr[conc[T][u]] ) );
} else {
coe = mul( coe, pwr[conc[T][u]] );
}
}
addeq( f[S], coe );
}
}
}
printf( "%d\n", sub( pwr[m], f[( 1 << n ) - 1] ) );
return 0;
}
Solution -「AGC 016F」Games on DAG的更多相关文章
- Solution -「AGC 036D」「AT 5147」Negative Cycle
\(\mathcal{Descriprtion}\) Link. 在一个含 \(n\) 个结点的有向图中,存在边 \(\lang i,i+1,0\rang\),它们不能被删除:还有边 \(\l ...
- Solution -「AGC 026D」Histogram Coloring
\(\mathcal{Description}\) Link. 有 \(n\) 列下底对齐的方格纸排成一行,第 \(i\) 列有 \(h_i\) 个方格.将每个方格染成黑色或白色,求使得任意完 ...
- Solution -「AGC 004E」「AT 2045」Salvage Robots
\(\mathcal{Description}\) Link. 有一个 \(n\times m\) 的网格.每个格子要么是空的,要么有一个机器人,要么是一个出口(仅有一个).每次可以命令所有机 ...
- Solution -「AGC 012F」「AT 2366」Prefix Median
\(\mathcal{Description}\) Link. 给定序列 \(\{a_{2n-1}\}\),将 \(\{a_{2n-1}\}\) 按任意顺序排列后,令序列 \(b_i\) 为前 ...
- Solution -「AGC 010C」「AT 2304」Cleaning
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的无根树,点有点权,每次选择两个不同的叶子,使它们间的简单路径的所有点权 \(-1\),问能否将所有点 ...
- Solution -「AGC 019E」「AT 2704」Shuffle and Swap
\(\mathcal{Description}\) Link. 给定 \(01\) 序列 \(\{A_n\}\) 和 \(\{B_n\}\),其中 \(1\) 的个数均为 \(k\).记 \( ...
- Solution -「AGC 019F」「AT 2705」Yes or No
\(\mathcal{Description}\) Link. 有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no.每次你需要回答一个问题,然后得知这个 ...
- Solution -「AGC 013E」「AT 2371」Placing Squares
\(\mathcal{Description}\) Link. 给定一个长度为 \(n\) 的木板,木板上有 \(m\) 个标记点,第 \(i\) 个标记点距离木板左端点的距离为 \(x_i\ ...
- Solution -「AGC 003D」「AT 2004」Anticube
\(\mathcal{Description}\) Link. 给定 \(n\) 个数 \(a_i\),要求从中选出最多的数,满足任意两个数之积都不是完全立方数. \(n\le10^5\) ...
随机推荐
- Linux上天之路(十四)之Linux数据处理
主要内容 数据检索 数据排序 数据去重 重定向 1. 数据检索 常和管道协作的命令 – grep grep:用于搜索模式参数指定的内容,并将匹配的行输出到屏幕或者重定向文件中,常和管道协作的命令 – ...
- 利用Word2010制作流程图
利用Word2010制作流程图 原文链接:https://www.toutiao.com/i6483034968225235469/ 一.页面和段落的设置 启动Word2010,打开一个空白文档,并切 ...
- CodeForces 519B A and B and Compilation Errors (超水题)
这道题是超级水的,在博客上看有的人把这道题写的很麻烦. 用 Python 的话是超级的好写,这里就奉上 C/C++ 的AC. 代码如下: #include <cstdio> #includ ...
- xray与burp联动被动扫描
最近也是刚实习了几天,看见带我的那位老哥在用xray,而且贼溜,所以我想写几篇关于xray的使用的文章 0x00 xray建立监听 在实际测试过程中,除了被动扫描,也时常需要手工测试.这里使用 Bur ...
- OSI/RM体系结构
OSI/RM体系结构是第一个标准化的计算机网络体系结构. 它是针对广域网通信(也就是不同网络之间的通信)进行设计 的,将整个网络通信的功能划分为七个层次,由低到高分别是物理层(Physical L ...
- golang中的GOPATH使用和简单项目配置
GOPATH 是 Go 语言的工作目录,他的值可以是一个目录路径,也可以是多个目录路径,每个目录都代表 go 语言的一个工作区. 我们开发 Golang 项目时,需要依赖一些别的代码包,这些包的存放路 ...
- gin中multipart/urlencoded表单
package main import ( "github.com/gin-gonic/gin" ) func main() { router := gin.Default() r ...
- java继承成员变量特点
1 /* 2 * 在子父类中,成员的特点体现. 3 * 1,成员变量. 4 * 2,成员函数. 5 * 3,构造函数. 6 */ 7 8 //1, 成员变量. 9 /* 10 * 当本类的成员和局部变 ...
- 在 Prim 算法中使用 pb_ds 堆优化
在 Prim 算法中使用 pb_ds 堆优化 Prim 算法用于求最小生成树(Minimum Spanning Tree,简称 MST),其本质是一种贪心的加点法.对于一个各点相互连通的无向图而言,P ...
- JavaFx 软件重启功能实现
原文地址: JavaFx 软件重启功能实现 | Stars-One的杂货小窝 本篇使用Kotlin在TornadoFx中实践,没有Java代码的示例,各位自行参考,思路已在本文中提及 实现思路 主要思 ...