【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits
Sunwoo Lee, , Anit Kumar Sahu, Chaoyang He, and Salman Avestimehr. "Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits." (2022).
简介
传统FedAvg算法下,SGD的多轮本地训练会导致模型差异增大,从而使全局loss收敛缓慢。本文作者提出每次本地用户更新后,仅对部分网络参数进行聚合,从而降低模型间参数差异。在128个用户时,验证准确率比FedAvg提高了2.2%,loss的下降速度也更快。但是该算法并没有减少传输的参数量,甚至会增加传输的次数,从而可能会提高总的延迟。
核心算法
每次更新所有用户网络的同一个部分,在周期\(\tau\)内完成网络所有参数的更新。和FedAvg相比,同样是交换了所有参数,只是改成了高频分部更新,所以差异会小一些。
理论推导
非常高深的理论推导,如何对部分网络进行操作值得学习【挖坑】
目前来看,根据数据进行优化,和贝叶斯学习,似乎是两种不同的理论分析思路。
仿真效果
- 用Dirichlet's distribution来生成异构数据分布
- cross-silo和cross-device的区别:cross-device表示每个时间节点只有部分客户端在线,cross-silo表示所有用户一直在线。
- variance reduction的技术会损害泛化性能
- 附录中的仿真设置非常详细,可以参考
评价
价值 = 新意100×有效性1×问题大小10
- 新意主要来源于理论推导部分,很硬核
- 网络更新的划分与数据分布并没有建立联系
【流行前沿】联邦学习 Partial Model Averaging in Federated Learning: Performance Guarantees and Benefits的更多相关文章
- 联邦学习 Federated Learning 相关资料整理
本文链接:https://blog.csdn.net/Sinsa110/article/details/90697728代码微众银行+杨强教授团队的联邦学习FATE框架代码:https://githu ...
- 【一周聚焦】 联邦学习 arxiv 2.16-3.10
这是一个新开的每周六定期更新栏目,将本周arxiv上新出的联邦学习等感兴趣方向的文章进行总结.与之前精读文章不同,本栏目只会简要总结其研究内容.解决方法与效果.这篇作为栏目首发,可能不止本周内容(毕竟 ...
- 【流行前沿】联邦学习 Federated Learning with Only Positive Labels
核心问题:如果每个用户只有一类数据,如何进行联邦学习? Felix X. Yu, , Ankit Singh Rawat, Aditya Krishna Menon, and Sanjiv Kumar ...
- 【论文考古】联邦学习开山之作 Communication-Efficient Learning of Deep Networks from Decentralized Data
B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, "Communication-Efficient Learni ...
- 百度Paddle会和Python一样,成为最流行的深度学习引擎吗?
PaddlePaddle会和Python一样流行吗? 深度学习引擎最近经历了开源热.2013年Caffe开源,很快成为了深度学习在图像处理中的主要框架,但那时候的开源框架还不多.随着越来越多的开发者开 ...
- django学习之Model(二)
继续(一)的内容: 1-跨文件的Models 在文件头部import进来,然后用ForeignKey关联上: from django.db import models from geography.m ...
- 联邦学习开源框架FATE助力腾讯神盾沙箱,携手打造数据安全合作生态
近日,微众银行联邦学习FATE开源社区迎来了两位新贡献者——来自腾讯的刘洋及秦姝琦,作为云计算安全领域的专家,两位为FATE构造了新的功能点,并在Github上提交修复了相关漏洞.(Github项目地 ...
- 联邦学习(Federated Learning)
联邦学习简介 联邦学习(Federated Learning)是一种新兴的人工智能基础技术,在 2016 年由谷歌最先提出,原本用于解决安卓手机终端用户在本地更新模型的问题,其设计目标是 ...
- 腾讯数据安全专家谈联邦学习开源项目FATE:通往隐私保护理想未来的桥梁
数据孤岛.数据隐私以及数据安全,是目前人工智能和云计算在大规模产业化应用过程中绕不开的“三座大山”. “联邦学习”作为新一代的人工智能算法,能在数据不出本地的情况下,实现共同建模,提升AI模型的效果, ...
随机推荐
- 用户注册调优 及Connection对象
调优的方法: (1)减少Connection对象的销毁与创建 我们可以在服务器启动时 预先创建好二十个Connection对象 因为每次Coonection对象的创建与销毁会浪费大量的时间 我们需要 ...
- 05.python解析式与生成器表达式
解析式和生成器表达式 列表解析式 列表解析式List Comprehension,也叫列表推导式 #生成一个列表,元素0-9,将每个元素加1后的平方值组成新的列表 x = [] for i in ra ...
- 百度地图BMap实现在行政区域内做标注
使用环境 vue bmap.js element-ui 页面展示 前提步骤 在index中引入百度地图提供的js库 在使用的vue页面中实例化地图 <!-- 给id随便起给名字 --> & ...
- testng.xml 执行多个测试用例
1.在工程名字上点击右键,点击[New]-->[File] 2.在弹出的[New File]对话框中的[File name]输入[testng.xml],点击[Finish]即创建了一个test ...
- 谱分解(SD)
前提:矩阵A必须可相似对角化! 充分条件: $A$ 是实对称矩阵 $A$ 有 $n$ 个互异特征值 $A^{\wedge} 2=A $ $\mathrm{A}^{\wedge} 2=\mathrm{E ...
- Jetpack—LiveData组件的缺陷以及应对策略 转至元数据结尾
一.前言 为了解决Android-App开发以来一直存在的架构设计混乱的问题,谷歌推出了Jetpack-MVVM的全家桶解决方案.作为整个解决方案的核心-LiveData,以其生命周期安全,内存安全等 ...
- 基于 SSR 的预渲染首屏直出方案
基于 SSR 的预渲染首屏直出方案 Create React Doc 是一个使用 React 的 markdown 文档站点生成工具.此前在 Create React Doc 中引入了预渲染技术来预先 ...
- 理解cpu load
三种命令 1. w 2. uptime 3. top CPU负载和CPU利用率的区别 1)CPU利用率:显示的是程序在运行期间实时占用的CPU百分比 2)CPU负载:显示的是一段时间内正在使用和等待使 ...
- http8种请求方式
根据HTTP标准,HTTP请求可以使用多种请求方法. HTTP1.0定义了三种请求方法: GET, POST 和 HEAD方法. HTTP1.1新增了五种请求方法:OPTIONS, PUT, DELE ...
- Android开发之打包apk
新建一个项目之后写点代码 选择build 之后选择Generate Signed APK (生成签名的APK) 选择create new 填写信息 Generate Signed APK 生成签名的A ...