Solution -「USACO 2020.12 P」Spaceship
\(\mathcal{Description}\)
Link.
Bessie 在一张含 \(n\) 个结点的有向图上遍历,站在某个结点上时,她必须按下自己手中 \(m\) 个按钮中处于激活状态的一个才能走向其他结点或终止遍历(不能原地等待)。初始时,所有按钮都处于激活状态,按下 \(i\) 号按钮时,\(i\) 号按钮变为非激活状态,所有编号 \(<i\) 的按钮被激活。
给定 \(q\) 组形如 \((b_s,s,b_t,t)\) 的询问,求 Bessie 从 \(s\) 出发,第一步按 \(b_s\) 按钮,到 \(t\) 终止遍历,且最后一步按 \(b_t\) 按钮的遍历方案数(遍历顺序或按键不同,方案则不同)。
\(n,k,q\le60\)。
\(\mathcal{Solution}\)
大概是图上的高维大力 DP 题叭。
初步理解按键规则:若把 \(m\) 个按键视为一个二进制数,那么在行动过程中这一数的数值是单增的——因为若按键最高非激活位被重新激活,则一定被更高位激活。
进一步,我们尝试以“非激活按键的最高位”为切入点设计 DP 状态。令 \(f(h,i,j)\) 表示从 \(i\) 出发(不钦定第一步)走到 \(j\)(不钦定最后一步),且非激活按键最高位不超过 \(h\) 的方案数。转移:
当前方案根本没有取到过 \(h\),\(f(h,i,j)\longleftarrow f(h-1,i,j)\)。
否则,枚举取到 \(h\) 的唯一一点 \(k\),显然有
\[f(h,i,j)\longleftarrow\sum_{(u,k),(k,v)\in E}f(h-1,i,u)f(h-1,v,j)
\]注意到 \(h\) 和 \(k\) 正在枚举,视为常数,乘法中的两个状态分别只和 \(i\) 与 \(j\) 有关,所以只需要定义辅助状态
\[g(i)=\sum_{(u,k)\in E}f(h-1,i,u)\\
h(j)=\sum_{(k,v)\in E}f(h-1,v,j)
\]则有 \(f(h,i,j)\longleftarrow g(i)h(j)\)。
最后一个问题,求出这个 \(f\) 有什么用呢?
\(f\) 的定义与询问的差别仅有是否限制第一步和最后一步,所以可以直接把 \(q\) 个限制当做虚拟点丢到状态里,让 \(f\) 成为 \(m\times(n+q)\times(n+q)\) 的状态,\(f(h,i,j)\) 的含义变为:
- \(i,j\le n\):含义不变;
- \(i\le n\),\(j>n\):从 \(i\) 出发(不钦定第一步),走到第 \(j-n\) 个询问的 \(t\) 且最后一步为 \(b_t\) 的方案数;
- \(i>n\),\(j\le n\):从第 \(i-1\) 个询问的 \(s\) 出发,且第一步为 \(b_s\),走到 \(j\)(不钦定最后一步)的方案数;
- \(i>n\),\(j>n\):同理。
可见,第 \(i\) 个询问的答案即为 \(f(m,n+i,n+i)\)。转移过程需要变化的地方仅是当枚举的 \((h,k)\) 恰好为某个询问的某个端点时才给 \(g\) 或 \(h\) 添加方案。
综上,复杂度 \(\mathcal O(mn(n+q)^2)\),代码极度舒适。
\(\mathcal{Code}\)
/* Clearink */
#include <cstdio>
#define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i )
const int MAXN = 60, MOD = 1e9 + 7;
int n, m, q, f[MAXN + 5][MAXN * 2 + 5][MAXN * 2 + 5];
int lef[MAXN * 2 + 5], rig[MAXN * 2 + 5];
char adj[MAXN + 5][MAXN + 5];
struct Query { int bs, s, bt, t; } qry[MAXN + 5];
inline int mul( const long long a, const int b ) { return a * b % MOD; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
int main() {
scanf( "%d %d %d", &n, &m, &q );
rep ( i, 1, n ) {
scanf( "%s", adj[i] + 1 );
rep ( j, 1, n ) adj[i][j] ^= '0';
}
rep ( i, 1, q ) {
scanf( "%d %d %d %d", &qry[i].bs, &qry[i].s, &qry[i].bt, &qry[i].t );
}
rep ( h, 1, m ) {
int ( *fcur )[MAXN * 2 + 5]( f[h] );
int ( *flas )[MAXN * 2 + 5]( f[h - 1] );
rep ( i, 1, n + q ) rep ( j, 1, n + q ) fcur[i][j] = flas[i][j];
rep ( k, 1, n ) {
rep ( i, 1, n ) lef[i] = rig[i] = 0;
lef[k] = rig[k] = 1;
rep ( i, 1, q ) {
lef[n + i] = qry[i].bs == h && qry[i].s == k;
rig[n + i] = qry[i].bt == h && qry[i].t == k;
}
rep ( i, 1, n + q ) rep ( j, 1, n ) if ( adj[j][k] ) {
addeq( lef[i], flas[i][j] );
}
rep ( i, 1, n ) rep ( j, 1, n + q ) if ( adj[k][i] ) {
addeq( rig[j], flas[i][j] );
}
rep ( i, 1, n + q ) rep ( j, 1, n + q ) {
addeq( fcur[i][j], mul( lef[i], rig[j] ) );
}
}
}
rep ( i, 1, q ) printf( "%d\n", f[m][n + i][n + i] );
return 0;
}
Solution -「USACO 2020.12 P」Spaceship的更多相关文章
- Solution -「USACO 2020.12 P」Sleeping Cows
\(\mathcal{Description}\) Link. 有 \(n\) 个牛棚,大小为 \(t_{1..n}\),\(n\) 头奶牛,大小为 \(s_{1..n}\),奶牛只能住进不小 ...
- Solution -「SV 2020 Round I」SA
\(\mathcal{Description}\) 求出处 owo. 给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...
- Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits
\(\mathcal{Description}\) link. 给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\)).现在把这些水果串成一棵无根树.称一 ...
- [LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞 试题描述 到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧 うそだよ~ 河北省怎么可能有 Stalin. ...
- Solution -「2020.12.26」 模拟赛
0x00 前言 一些吐槽. 考得很变态诶,看每道题平均两秒的时限就知道了... T1 降智了想到后缀懒得打. T2 口胡了假优化,结果和暴力分一样?? T3 黑题还绑点?? \(50 + 80 + 0 ...
- Solution -「ZJOI 2020」「洛谷 P6631」序列
\(\mathcal{Description}\) Link. 给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...
- Solution -「JOISC 2020」「UOJ #509」迷路的猫
\(\mathcal{Decription}\) Link. 这是一道通信题. 给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\). 程序 Anthon ...
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- Solution -「FJWC 2020」人生
\(\mathcal{Description}\) OurOJ. 有 \(n\) 个结点,一些结点有染有黑色或白色,其余待染色.将 \(n\) 个结点染上颜色并连接有向边,求有多少个不同(结点 ...
随机推荐
- LC 二叉树的最大深度
https://leetcode-cn.com/leetbook/read/top-interview-questions-easy/xnd69e/ Recursion /** * Definitio ...
- VM和CentOS7安装教程
如果图片损坏,点击链接:https://www.toutiao.com/i6491076101664670222/ 安装软件 VMware_workstation_full_12.5.2 CentOS ...
- vue2.0中实现echarts图片下载-----书写中
由于各个版本浏览器兼容性不一,所以,我们需要一个判断浏览器类型的函数来对不同的浏览器做不同的处理. 获取浏览器版本的函数 // 判断浏览器类型 IEVersion () { let userAgent ...
- 利用代码生成工具Database2Sharp生成ABP VNext框架项目代码
我们在做某件事情的时候,一般需要详细了解它的特点,以及内在的逻辑关系,一旦我们详细了解了整个事物后,就可以通过一些辅助手段来提高我们的做事情的效率了.本篇随笔介绍ABP VNext框架各分层项目的规则 ...
- h5跳转高德地图
<a href="https://uri.amap.com/marker?position=经度,纬度&name=所在的位置名称">高德地图</a>
- 离线下载第三方Python包
1.进入Python第三方包下载地(https://pypi.org/)搜索自己需要的包 2.下载需要的包的版本 3.将.whl格式的文件更改为.zip文件,并且解压 4.将解压的2个文件放到Pyth ...
- 【Java常用类】BigInteger
BigInteger Integer类作为int的包装类,能存储的最大整型值为2^31-1,Long类也是有限的, 最大为2 ^63-1.如果要表示再大的整数,不管是基本数据类型还是他们的包装类 都无 ...
- 【必杀】为应用程序池“XXX”提供服务的进程在与 Windows Process Activation Service 通信时出现严重错误。该进程 ID 为“XXXX”。数据字段包含错误号。
之前写过一篇文章,https://www.cnblogs.com/qidian10/p/6028784.html 解释如何解决此类问题,但现在回过头来想一下,之前的文章还是太过浅显,无法完全有效的彻底 ...
- mac 更新到big sur 后,parallels虚拟机的一些问题:由于您尚未获得访问其中一些文件的授权,所以您不能恢复“Windows 10
由于您尚未获得访问其中一些文件的授权,所以您不能恢复"Windows 10 Mac上使用PD虚拟机,打开系统时提示"由于您尚未获得访问其中一些文件的授权,所以您不能恢复" ...
- 当Hobject类型出现内存泄漏爆炸增长的问题,怎么处理
尝试使用get,和set(在拍照之后,调用set,在obj使用前释放资源的思想来完成) HObject Get_inputImage() { return inputImage; } void Set ...