Solution -「ARC 125E」Snack
\(\mathcal{Description}\)
Link.
把 \(n\) 种零食分给 \(m\) 个人,第 \(i\) 种零食有 \(a_i\) 个;第 \(i\) 个人得到同种零食数量不超过 \(b_i\),总数量不超过 \(c_i\),求最多分出的零食数量。
\(n,m\le2\times10^5\)。
\(\mathcal{Solution}\)
很容易看出这是网络流模型:
- 源点 \(S\) 连向每种零食 \(i\),容量 \(a_i\);
- 零食 \(i\) 连向人 \(j\),容量 \(b_j\);
- 人 \(j\) 连向汇点 \(T\),容量 \(c_j\)。
答案即为 \(S\) 到 \(T\) 的最大流。
在这样的网络中,我们发现容量的种类数少,而边数很多,可以推出边的容量与这条边具体连接两端结点的相关性不强。这种时候,可以尝试手算最小割。
具体地,设零食集合 \(A\) 被割入 \(S\) 部,那么对于一个人 \(i\),他被割入 \(S\) 部的代价为 \(c_i\),被割入 \(T\) 部的代价是 \(|A|b_i\),我们应取两者较小值,而这果然与 \(A\) 集合具体构成不相关。所以,枚举 \(|A|\in[0,n]\),每个人一定在一段前缀中被割入 \(T\) 部,在其余情况被割入 \(S\) 部,利用单调性维护这一过程,做到复杂度 \(\mathcal O(n\log n+m\log m)\),两个瓶颈皆为排序。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <bits/stdc++.h>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef long long LL;
inline void chkmin( LL& a, const LL b ) { b < a && ( a = b ); }
const int MAXN = 2e5;
int n, m, b[MAXN + 5], ord[MAXN + 5];
LL a[MAXN + 5], c[MAXN + 5];
int main() {
scanf( "%d %d", &n, &m );
rep ( i, 1, n ) scanf( "%lld", &a[i] );
rep ( i, 1, m ) scanf( "%d", &b[i] ), ord[i] = i;
rep ( i, 1, m ) scanf( "%lld", &c[i] );
std::sort( a + 1, a + n + 1,
[]( const LL u, const LL v ) { return u > v; } );
std::sort( ord + 1, ord + m + 1, []( const int u, const int v )
{ return 1ull * c[u] * b[v] < 1ull * c[v] * b[u]; } );
LL sa = 0, sb = 0, sc = 0, ans = 1ll << 60;
rep ( i, 1, n ) sa += a[i];
rep ( i, 1, m ) sb += b[i];
for ( int i = 0, j = 1; i <= n; ++i ) {
sa -= a[i];
for ( ; j <= m && 1ll * i * b[ord[j]] > c[ord[j]];
sb -= b[ord[j]], sc += c[ord[j++]] );
chkmin( ans, sa + i * sb + sc );
}
printf( "%lld\n", ans );
return 0;
}
Solution -「ARC 125E」Snack的更多相关文章
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「ARC 101D」「AT4353」Robots and Exits
\(\mathcal{Description}\) Link. 有 \(n\) 个小球,坐标为 \(x_{1..n}\):还有 \(m\) 个洞,坐标为 \(y_{1..m}\),保证上述坐标 ...
- Solution -「ARC 110D」Binomial Coefficient is Fun
\(\mathcal{Description}\) Link. 给定非负整数序列 \(\{a_n\}\),设 \(\{b_n\}\) 是一个非负整数序列且 \(\sum_{i=1}^nb_i\ ...
- Solution -「ARC 124E」Pass to Next
\(\mathcal{Description}\) Link. 有 \(n\) 个人站成一个环,初始时第 \(i\) 个人手里有 \(a_i\) 个球.第 \(i\) 个人可以将自己手中任意数 ...
- Solution -「ARC 126E」Infinite Operations
\(\mathcal{Description}\) Link. 给定序列 \(\{a_n\}\),定义一次操作为: 选择 \(a_i<a_j\),以及一个 \(x\in\mathbb R ...
- Solution -「ARC 126F」Affine Sort
\(\mathcal{Description}\) Link. 给定 \(\{x_n\}\),令 \[f(k)=\left|\{(a,b,c)\mid a,b\in[0,c),c\in[1,k ...
- Solution -「ARC 125F」Tree Degree Subset Sum
\(\mathcal{Description}\) Link. 给定含有 \(n\) 个结点的树,求非负整数对 \((x,y)\) 的数量,满足存在 \(\exist S\subseteq V ...
- Solution -「ARC 058C」「AT 1975」Iroha and Haiku
\(\mathcal{Description}\) Link. 称一个正整数序列为"俳(pái)句",当且仅当序列中存在连续一段和为 \(x\),紧接着连续一段和为 \(y ...
- Solution -「ARC 101E」「AT 4352」Ribbons on Tree
\(\mathcal{Description}\) Link. 给定一棵 \(n\) 个点的树,其中 \(2|n\),你需要把这些点两两配对,并把每对点间的路径染色.求使得所有边被染色的方案数 ...
随机推荐
- kubernetes (k8s) CKA认证之第二课:亲和性与 Pod 的调度
手动调度一个 pod // cat manual-schedule.yaml apiVersion: v1 kind: Pod metadata: labels: run: pod-manual-sc ...
- 解压安装Cacti在apache中的补充
如果你不是安装 Cacti 到 Apache 默认的网络目录文件夹位置,那么在 /etc/httpd/conf.d 中新增配置文件 cacti.conf,并且按如下内容编辑.设置 /your/cact ...
- 【Azure 应用服务】一个 App Service 同时部署运行两个及多个 Java 应用程序(Jar包)
问题描述 如何在一个AppService下同时部署运行多个Java 应用程序呢? 问题解答 因为App Service的默认根目录为 wwwroot.如果需要运行多个Java 应用程序,需要在 www ...
- 【从小白到专家】 Istio专题之七:30分钟讲透Istio访问与控制
本文为Istio系列专题之七--Istio访问与控制.Istio通过身份认证.授权.多重安全策略,来保证微服务的安全,实现代码无侵入性.有时我们需要对微服务间的相互访问进行控制,比如满足某些条件的微服 ...
- XCTF-反序列化中_wakeup()函数
跳过_wakeup()魔法函数__wakeup(): 将在序列化之后立即被调用漏洞原理: 当反序列化字符串中,表示属性个数的值大于其真实值,则跳过__wakeup()执行 对于该题,先可以看到类xct ...
- 【Java】toString
toString 当我们输出一个对象的引用时,实际上就是调用当前对象的toString() Object类中toString()的定义: public String toString() { retu ...
- linux简单命令汇总
ls [选项] [文件或目录] -a 显示所有文件,包括隐藏文件 -l 显示详细信息 -d 查看目录属性 -h 人性化显示文件大小 -i 显示inode mkdir [选项] 目录名 -p 递归创建 ...
- Solon Web 开发,十三、WebSocket
Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...
- ARTS Week 22
Algorithm 本周的 LeetCode 题目为 297. 二叉树的序列化与反序列化 序列化是将一个数据结构或者对象转换为连续的比特位的操作,进而可以将转换后的数据存储在一个文件或者内存中,同时也 ...
- 请解释final finally finalize的区别
final 关键字 ,可以定义不能被继承的父类.定义不能被重写的方法,常量 finally 关键字, 异常处理的统一出口 不管是否有异常都执行 finalize 方法(protected ...