Liu M., Tuzel O. Coupled Generative Adversarial Networks. NIPS, 2016.

用GAN和数据(从边缘分布中采样)来拟合联合分布.

主要内容

这篇文章想要解决的问题是, 在仅有俩组不同数据(即从各自边缘分布中采样的数据), 如何用GAN来近似二者的联合分布呢?

思想是很直接的, 让生成器的前几层共享权重, 判别器的前几层共享权重, 其直观理解是这些层实际上都反应的是数据的抽象的信息, 作者认为两个边缘分布的数据的经过特征提取后的高维的信息是一致的. 用数学符号表示就是

\[g_1^l(g_1^{l-1}(\cdots g_1^2(g_1^1(z)))) \quad g_2^l(g_2^{l-1}(\cdots g_2^2(g_2^1(z)))) \\
g_1^i=g_2^i,\quad i=1,\ldots, k.
\]

对于判别器是类似的.

当然通过这么共享权重, 两个生成器生成的图片必然有所联系, 可这两个生成器所拟合的联合分布就是我们想要的联合分布? 换言之, 我们想要的联合分布究竟是什么?

当然, 有了一个联合分布是挺有用的, 毕竟有了联合分布也就有了条件分布, 我们可以借此来做一些风格的迁移, 这也是文章提到的应用之一.

归根结底, 还是拟合联合分布这一操作让我困惑, 到底二者的联合分布是什么, 又或者什么样的分布是好的联合分布?

代码

原文代码

CoGAN的更多相关文章

  1. Install SharePoint 2013 on Windows Server 2012 without a domain

    Any setup of Team Foundation Server is not complete until you have at least tried t work with ShareP ...

  2. List Of All Machine Learning Sorted By Citation

    List Of All Machine Learning Sorted By Citation With > 300 citations 2013-10-10 See Citation Anal ...

  3. 提高驾驶技术:用GAN去除(爱情)动作片中的马赛克和衣服

    同步自我的知乎专栏:https://zhuanlan.zhihu.com/p/27199954 作为一名久经片场的老司机,早就想写一些探讨驾驶技术的文章.这篇就介绍利用生成式对抗网络(GAN)的两个基 ...

  4. Generative Adversarial Nets[content]

    0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...

  5. 常见GAN的应用

    深入浅出 GAN·原理篇文字版(完整)|干货 from:http://baijiahao.baidu.com/s?id=1568663805038898&wfr=spider&for= ...

  6. 《StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation》论文笔记

    ---恢复内容开始--- Motivation 使用单组的生成器G和判别训练图片在多个不同的图片域中进行转换 效果确实很逆天,难怪连Good Fellow都亲手给本文点赞 Introduction 论 ...

  7. Generative Adversarial Networks overview(2)

    Libo1575899134@outlook.com Libo (原创文章,转发请注明作者) 本文章会先从Gan的简单应用示例讲起,从三个方面问题以及解决思路覆盖25篇GAN论文,第二个大部分会进一步 ...

  8. StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation - 1 - 多个域间的图像翻译论文学习

    Abstract 最近在两个领域上的图像翻译研究取得了显著的成果.但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型.为了解决该问题,我们 ...

  9. 深度学习-生成对抗网络GAN笔记

    生成对抗网络(GAN)由2个重要的部分构成: 生成器G(Generator):通过机器生成数据(大部分情况下是图像),目的是“骗过”判别器 判别器D(Discriminator):判断这张图像是真实的 ...

随机推荐

  1. linux允许直接以root身份ssh登录

    1. sudo su - 2. vim /etc/ssh/sshd_config 3. let "PermitRootLogin" equal yes 4. :wq 5. serv ...

  2. 转 android开发笔记之handler+Runnable的一个巧妙应用

    本文链接:https://blog.csdn.net/hfreeman2008/article/details/12118817 版权 1. 一个有趣Demo: (1)定义一个handler变量 pr ...

  3. Apache架构师的30条设计原则

    本文作者叫 Srinath,是一位科学家,软件架构师,也是一名在分布式系统上工作的程序员. 他是 Apache Axis2 项目的联合创始人,也是 Apache Software 基金会的成员. 他是 ...

  4. Linux基础命令---dig工具

    dig dig是一个DNS查询工具,多数管理员会使用dig命令来解决DNS的问题. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS.Fedora.   1.语法       di ...

  5. APICloud - 提交项目 点击右键 没有git这个选项

    你们是不是也遇到过这个问题,吧项目检出来后,花了很久的时间,好不容易吧项目改完,提交的时候点击鼠标右键,发现git选项没有在里面了,找不到,但是这个问题也不是很常遇到,机率很小,下面我来告诉你们吧 原 ...

  6. 用户信息查询系统_daoImpl

    package com.hopetesting.dao.impl;import com.hopetesting.dao.UserDao;import com.hopetesting.domain.Us ...

  7. 关于requests.exceptions.ConnectionError: HTTPSConnectionPool的问题

    错误如下: raise ConnectionError(e, request=request)requests.exceptions.ConnectionError: HTTPSConnectionP ...

  8. JavaEE期末复习

    期末复习 基础 jsp技术中嵌入java代码,使用的符号 <%%> 掌握jsp技术中引用其他标签库指令标签的书写 掌握jsp技术中request对象setAttribute( ).setC ...

  9. 攻击科普:DDos

    目录 一.DDoS 攻击究竟是什么? 二.DDoS 攻击多少G是什么意思? 二.DDoS攻击种类 ICMP Flood UDP Flood NTP Flood SYN Flood CC攻击 DNS Q ...

  10. 新手指南:顶象验证码如何接入微信小程序?

    自2017年小程序发布以来,经过4年的快速发展,小程序已然成为企业互联网布局不可或缺的一环.无论是互联网企业还是拥抱互联网的传统企业,无论是服务导向型企业还是产品导向型企业,小程序都为用户提供了一种轻 ...