这篇论文比较短,先看了这篇,本来应该先把ADAGRAD看了的。普通的基于梯度下降的方法,普遍依赖于步长,起始点的选择,所以,受ADAGRAD的启发,作者提出了一种ADADELTA的方法。

\[\Delta x_t = -\frac{\mathrm{RMS}[\Delta x]_{t-1}}{\mathrm{RMS}[g]_t}g_t
\]

其中\(g_t=\frac{\partial f(x_t)}{\partial x_t}\),所以下一步迭代就是:

\[x_{t+1} = x_t + \Delta x_t
\]

主要内容

ADAGRAD方法:

\[\Delta x_t = -\frac{\eta}{\sqrt{\sum_{\tau=1}^t g_{\tau}^2}}g_t
\]

也就是,步长与之前所有的梯度有关,显然这个步长是会逐渐减少的。但是这个缺点也很明显,如果起始点的梯度很大,那么就会导致后续步长很小,而一开始的梯度很小,就会导致后续步长很大,产生振荡,有些怪怪的。

而ADADELTA希望只关心一部分的梯度,比如

\[\sqrt{\sum_{\tau=t-k}^tg_{\tau}^2}
\]

但是这么做,每次迭代都必须记录\(k\)个梯度,这显得不怎么效率,于是,作者相处了一个法子:

\[E[g^2]_t = \rho E[g^2]_{t-1} + (1-\rho)g_t^2
\]

可以看到,对于\(g_1\),\(t+1\)步之后其影响为:\(\rho^t(1-\rho) g_1\),对整个迭代造成的影响是一个等比序列:

\[(1-\rho), \rho (1-\rho), \ldots, \rho^t(1-\rho)
\]

最后趋向于:

\[1-\rho^{t+1} \rightarrow1
\]

这么做就俩劝其美啦。

记:

\[\mathrm{RMS}[g]_t = \sqrt{E[g^2]_t + \epsilon}
\]

其中\(\epsilon\)是为了让除法有意义而添加的小量。

所以

\[\Delta x_t = -\frac{\eta}{\mathrm{RMS}[g]_t}g_t
\]

这还不是最终版本,另一个启发决定了\(\eta\)的选择。

我们知道,很多问题是有实际含义的,\(x\)可能是有单位的,比如是米,天等,所以,一个很自然的期望是,\(\Delta x\)的单位和\(x\)是保持一致的。但是:

\[\mathrm{units \: of \:}\Delta x \propto \mathrm{units \: of \:} g \propto \frac{\partial f}{\partial x}\propto \frac{1}{\mathrm{units \: of \:} x}
\]

也就是说\(\Delta x\)的步长单位和梯度单位是一致的,就像是\(l=vt\),\(\Delta t\)的步长单位是\(m/s\),是时间单位的倒数。

而利用二阶导数迭代步长就符合单位一致(如Newton方法):

\[\Delta x \propto H^{-1} g \propto \frac{\frac{\partial f}{\partial x}}{\frac{\partial^2 f}{\partial x^2}} \propto \mathrm{units \: of \:} x
\]

其中\(H\)为Hessian矩阵。

又注意到:

\[\Delta x = \frac{\frac{\partial f}{\partial x}}{\frac{\partial^2 f}{\partial x^2}} \Rightarrow \frac{1}{\frac{\partial^2 f}{\partial x^2}} = \frac{\Delta x}{\frac{\partial f}{\partial x}}
\]

于是,完全体的ADADELTA方法变为如下:

\[\Delta x_t = -\frac{\mathrm{RMS}[\Delta x]_{t-1}}{\mathrm{RMS}[g]_t}g_t
\]

分子式\(t-1\)的原因式\(\Delta x_t\)压根不知道,所木有办法,就将就一下。

算法

完整的算法如下:

需要注意一点的是,在实际实验中,我们设置\(E[\Delta x^2]_0=1\)而不是如算法中所说的0。因为,如果设置为0,那么意味着第一步只进行相当微小的迭代,所以之后也都是微小的迭代。或许作者是将\(\epsilon\)设置为\(1\)?而不是一个小量?

ADADELTA 代码

import numpy as np
import matplotlib.pyplot as plt

这次用比较怪一点的方式来写,首先,创建一个类,用来存放函数\(f\)和梯度\(g\)

class ADADELTA:
def __init__(self, function, gradient, rho=0.7):
assert hasattr(function, "__call__"), "Invalid function"
assert hasattr(gradient, "__call__"), "Invalid gradient"
assert 0 < rho < 1, "Invalid rho"
self.__function = function
self.__gradient = gradient
self.rho = rho
self.acc_gradient = 0 #初始化accumulate gradient
self.acc_updates = 1 #初始化accumulate updates
self.progress = [] @property
def function(self):
return self.__function @property
def gradient(self):
return self.__gradient def reset(self):
self.acc_gradient = 0 #初始化accumulate gradient
self.acc_updates = 1 #初始化accumulate updates
self.progress = []

计算累计梯度

\[E[g^2]_t = \rho E[g^2]_{t-1} + (1-\rho)g_t^2
\]
def accumulate_gradient(self, gt):
self.acc_gradient = self.rho * self.acc_gradient \
+ (1 - self.rho) * gt ** 2
return self.acc_gradient
ADADELTA.accumulate_gradient = accumulate_gradient

更新\(E[\Delta x]_t\)

\[E[\Delta x^2]_t = \rho E[\Delta x^2]_{t-1} + (1-\rho)\Delta x_t^2
\]
def accumulate_updates(self, deltax):
self.acc_updates = self.rho * self.acc_updates \
+ (1 - self.rho) * deltax ** 2
return self.acc_updates
ADADELTA.accumulate_updates = accumulate_updates

计算更新步长:

\[\Delta x_t = -\frac{\mathrm{RMS}[\Delta x]_{t-1}}{\mathrm{RMS}[g]_t}g_t
\]
def step(self, x, smoothingterm=1e-8):
gt = self.gradient(x)
self.accumulate_gradient(gt)
RMS_gt = np.sqrt(self.acc_gradient + smoothingterm)
RMS_up = np.sqrt(self.acc_updates + smoothingterm)
deltax = -RMS_up / RMS_gt * gt
self.accumulate_updates(deltax)
return x + deltax
ADADELTA.step = step

进行t步

def process(self, startx, t, smoothingterm=1e-8):
x = startx
for i in range(t):
self.progress.append(x)
x = self.step(x, smoothingterm)
return self.progress
ADADELTA.process = process

可视化

def plot(self):
x = np.arange(1, len(self.progress) + 1)
y = np.array([
self.function(item) for item in self.progress
])
fig, ax = plt.subplots(constrained_layout=True)
ax.plot(x, y)
ax.set_xlabel("steps")
ax.set_ylabel("value of function")
ax.set_title("value with steps")
plt.show()
ADADELTA.plot = plot
def function(x):
return x[0] ** 2 + 50 * x[1] ** 2 def gradient(x):
return 2 * x[0] + 100 * x[1]
test = ADADELTA(function, gradient, 0.9)
test.reset()
startx = np.array([10, 10])
test.process(startx, 50)
test.plot()

ADADELTA: AN ADAPTIVE LEARNING RATE METHOD的更多相关文章

  1. Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题

    一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的 ...

  2. Keras 自适应Learning Rate (LearningRateScheduler)

    When training deep neural networks, it is often useful to reduce learning rate as the training progr ...

  3. Dynamic learning rate in training - 培训中的动态学习率

    I'm using keras 2.1.* and want to change the learning rate during training. I know about the schedul ...

  4. mxnet设置动态学习率(learning rate)

    https://blog.csdn.net/xiaotao_1/article/details/78874336 如果learning rate很大,算法会在局部最优点附近来回跳动,不会收敛: 如果l ...

  5. 学习率(Learning rate)的理解以及如何调整学习率

    1. 什么是学习率(Learning rate)?   学习率(Learning rate)作为监督学习以及深度学习中重要的超参,其决定着目标函数能否收敛到局部最小值以及何时收敛到最小值.合适的学习率 ...

  6. 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)

    1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间    当 ...

  7. learning rate warmup实现

    def noam_scheme(global_step, num_warmup_steps, num_train_steps, init_lr, warmup=True): ""& ...

  8. pytorch learning rate decay

    关于learning rate decay的问题,pytorch 0.2以上的版本已经提供了torch.optim.lr_scheduler的一些函数来解决这个问题. 我在迭代的时候使用的是下面的方法 ...

  9. machine learning (5)---learning rate

    degugging:make sure gradient descent is working correctly cost function(J(θ)) of Number of iteration ...

随机推荐

  1. A Child's History of England.30

    CHAPTER 10 ENGLAND UNDER HENRY THE FIRST, CALLED FINE-SCHOLAR Fine-scholar, on hearing of the Red Ki ...

  2. 单体内置对象 Global 和 Math

    单体内置对象 Global 和 Math 在所有代码执行前,作用域中就已经存在两个内置对象:Global(全局)和Math.在大多数ES实现中都不能直接访问Global对象.不过,WEB浏览器实现了承 ...

  3. Set && Map

    ES6 提供了新的数据结构 Set, Map Set成员的值都是唯一的,没有重复的值,Set内的元素是强类型,会进行类型检查. let set = new Set([1, true, '1', 'tr ...

  4. Linux信号1

    信号(signal)是一种软中断,他提供了一种处理异步事件的方法,也是进程间唯一的异步通信方式.在Linux系统中,根据POSIX标准扩展以后的信号机制,不仅可以用来通知某进程发生了什么事件,还可以给 ...

  5. 【Linux】【Shell】【Basic】条件测试和变量

    bash脚本编程       脚本文件格式:         第一行,顶格:#!/bin/bash         注释信息:#         代码注释:         缩进,适度添加空白行:   ...

  6. this指针的用法和基本分析

    当在不同的对象中采用this指针,就已经是在给它赋值了.对象各自的this指针指向各自对象的首地址,所以不同对象的this指针一定指向不同的内存地址. this 指针是由系统自动提供的指向对象的特殊指 ...

  7. 【C/C++】二维数组的传参的方法/二维字符数组的声明,使用,输入,传参

    [问题] 定义了一个子函数,传参的内容是一个二维数组 编译提示错误 因为多维数组作为形参传入时,必须声明除第一位维外的确定值,否则系统无法编译(算不出偏移地址) [二维数组的传参] 方法一:形参为二维 ...

  8. numpy基础教程--clip函数的使用

    在numpy中,clip函数的原型为clip(self, min=None, max=None, out=None),意思是把小于min的数全部置换为min,大于max的数全部置换为max,在[min ...

  9. C++STL标准库学习笔记(四)multiset续

    自定义排序规则的multiset用法 前言: 在这个笔记中,我把大多数代码都加了注释,我的一些想法和注解用蓝色字体标记了出来,重点和需要关注的地方用红色字体标记了出来,只不过这一次的笔记主要是我的补充 ...

  10. Linux下安装chrome

    目录 一.Centos系列 二.Ubuntu系列 一.Centos系列 1.配置yum下载源 vim /etc/yum.repos.d/chrome.repo [google-chrome] name ...