作者: 负雪明烛
id: fuxuemingzhu
个人博客: http://fuxuemingzhu.cn/


题目地址:https://leetcode.com/problems/minimum-path-sum/description/

题目描述

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
[1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

题目大意

求一个矩阵从左上角到右下角的最短路径和。

解题方法

第一感觉是dfs,但是题目没有说范围,估计会超时。然后就想到了DP。

使用DP创建了一个path数组,和grid数组是一样的。path代表了从左上角开始到某个点的最短路径。那么很容易知道,新的一个点的最短路径一定等于其上方、左方最短路径+当前的值。因此写成双重循环即可。因为要用到上方、左方的值,数组第一行和第一列会超出边框,其实只需要把这个方向设为前面的那个路径值即可。

这个算法的时间啊复杂度是O(m * n),空间复杂度是O(m * n)。

代码如下:

class Solution:
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not grid or not grid[0]: return 0
m, n = len(grid), len(grid[0])
path = copy.deepcopy(grid)
for i in range(m):
for j in range(n):
if i == 0 and j == 0:
before = 0
elif i == 0:
before = path[i][j-1]
elif j == 0:
before = path[i-1][j]
else:
before = min(path[i-1][j], path[i][j-1])
path[i][j] = before + grid[i][j]
return path[m-1][n-1]

发现path数组没有必要重新复制出来,可以直接使用grid代表了。这样实际上就对grid进行了一个覆盖:遍历过的地方代表path,还没遍历到的地方代表grid。

这个算法的时间复杂度是O(m * n),空间复杂度是O(1)。由于少了复制数组的一步,事实上真的变快了。

class Solution:
def minPathSum(self, grid):
"""
:type grid: List[List[int]]
:rtype: int
"""
if not grid or not grid[0]: return 0
m, n = len(grid), len(grid[0])
for i in range(m):
for j in range(n):
if i == 0 and j == 0:
before = 0
elif i == 0:
before = grid[i][j-1]
elif j == 0:
before = grid[i-1][j]
else:
before = min(grid[i-1][j], grid[i][j-1])
grid[i][j] = before + grid[i][j]
return grid[m-1][n-1]

二刷的时候使用的C++,方法仍然是动态规划,第一行的每个状态等于左边状态+当前位置,和第一列的每个状态等于上边状态+当前位置。其余位置等于上边和左边的状态最小值加上当前位置。

C++代码如下:

class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
const int M = grid.size(), N = grid[0].size();
vector<vector<int>> dp(M, vector<int>(N, 0));
dp[0][0] = grid[0][0];
for (int i = 1; i < M; ++i)
dp[i][0] = dp[i - 1][0] + grid[i][0];
for (int j = 0; j < N; ++j)
dp[0][j] = dp[0][j - 1] + grid[0][j];
for (int i = 1; i < M; ++i) {
for (int j = 1; j < N; ++j) {
dp[i][j] = min(dp[i - 1][j], dp[i][j - 1]) + grid[i][j];
}
}
return dp[M - 1][N - 1];
}
};

参考资料:

日期

2018 年 9 月 11 日 —— 天好阴啊
2018 年 12 月 29 日 —— 2018年剩余电量不足1%

【LeetCode】64. Minimum Path Sum 解题报告(Python & C++)的更多相关文章

  1. LeetCode: Minimum Path Sum 解题报告

    Minimum Path Sum Given a m x n grid filled with non-negative numbers, find a path from top left to b ...

  2. leetCode 64.Minimum Path Sum (最短路) 解题思路和方法

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  3. [LeetCode] 64. Minimum Path Sum 最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  4. LeetCode 64. Minimum Path Sum(最小和的路径)

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  5. LeetCode 64 Minimum Path Sum

    Problem: Given a m x n grid filled with non-negative numbers, find a path from top left to bottom ri ...

  6. C#解leetcode 64. Minimum Path Sum

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  7. [leetcode]64. Minimum Path Sum最小路径和

    Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which ...

  8. [leetcode] 64. Minimum Path Sum (medium)

    原题 简单动态规划 重点是:grid[i][j] += min(grid[i][j - 1], grid[i - 1][j]); class Solution { public: int minPat ...

  9. leecode 每日解题思路 64 Minimum Path Sum

    题目描述: 题目链接:64 Minimum Path Sum 问题是要求在一个全为正整数的 m X n 的矩阵中, 取一条从左上为起点, 走到右下为重点的路径, (前进方向只能向左或者向右),求一条所 ...

随机推荐

  1. C++常用的字符串处理函数-全

    这是自己用stl实现的一些字符串处理函数和常用的字符串处理技巧,经验正基本无误,可直接使用,若有问题,可相应列出 包括:split string to int int to string join # ...

  2. SourceTree使用图解-转

    这篇文档的目的是:让使用Git更轻松. 看完这篇文档你能做到的是: 1.简单的用Git管理项目. 2.怎样既要开发又要处理发布出去的版本bug情况. SourceTree是一个免费的Git图形化管理工 ...

  3. 远程登录Linux系统及上传下载文件

    目录 1. 远程登录Linux系统 1.1 为什么要远程登录 1.2 Xshell6安装 1.3 连接登录 1.3.1 连接前提 1.3.2 Xshell连接配置 2. 远程上传下载文件 2.1 Xf ...

  4. EXCEL-名称管理器

    1.怎么用? 两种方法 参考:https://jingyan.baidu.com/article/a378c960a26f26b3282830a6.html 2.有什么功能? (1)直接引用或者函数直 ...

  5. shell 的 功能语句--1

    [1]说明性语句 (1)shell 程序和语句 shell 程序由零或多条shell语句构成. shell语句包括三类:说明性语句.功能性语句和结构性语句. 说明性语句: 以#号开始到该行结束,不被解 ...

  6. Spring Security 基于URL的权限判断

    1.  FilterSecurityInterceptor 源码阅读 org.springframework.security.web.access.intercept.FilterSecurityI ...

  7. mybatis项目中,使用useSSL=true却报错

    今天在玩儿mybatis的时候遇到一个蛮有东西的事情:抛了一个让我折腾几个小时的错误,所以记录一下 这个错误有意思的地方就在于这里: 当使用useSSL安全连接时,抛出了上述的错误把useSSL改为f ...

  8. A Child's History of England.6

    It was a British Prince named Vortigern who took this resolution, and who made a treaty of friendshi ...

  9. JAXB—Java类与XML文件之间转换

    JAXB-Java类与XML文件之间转换 简介         JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生 ...

  10. 隐藏状态栏后tableview自动上移20个像素的问题

    最近在开发过程中碰到一个很奇怪的问题,将状态栏隐藏掉之后,页面上的tableView会自动上移20个像素. 这是因为在iOS7.0之后,系统会自动调整scrollView的layout 和 conte ...