Computer

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6378    Accepted Submission(s): 3211

Problem Description
A school bought the first computer some time ago(so this computer's id is 1). During the recent years the school bought N-1 new computers. Each new computer was connected to one of settled earlier. Managers of school are anxious about slow functioning of the net and want to know the maximum distance Si for which i-th computer needs to send signal (i.e. length of cable to the most distant computer). You need to provide this information. 


Hint: the example input is corresponding to this graph. And from the graph, you can see that the computer 4 is farthest one from 1, so S1 = 3. Computer 4 and 5 are the farthest ones from 2, so S2 = 2. Computer 5 is the farthest one from 3, so S3 = 3. we also get S4 = 4, S5 = 4.
 
Input
Input file contains multiple test cases.In each case there is natural number N (N<=10000) in the first line, followed by (N-1) lines with descriptions of computers. i-th line contains two natural numbers - number of computer, to which i-th computer is connected and length of cable used for connection. Total length of cable does not exceed 10^9. Numbers in lines of input are separated by a space.
 
Output
For each case output N lines. i-th line must contain number Si for i-th computer (1<=i<=N).
 
Sample Input
5
1 1
2 1
3 1
1 1
 
Sample Output
3
2
3
4
4
 
 
Author
scnu
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1011 3456 1520 2242 1059 
题意:给n个点,1为根节点,给你的是棵树,然后找到各个节点离树上其他节点最远的距离;
思路:树形dp;
因为这是一颗树,除了根节点外其他每个节点都又且一个父亲节点,首先dfs更新每个节点到其子节点下端的最长距离和次长距离,然后最长距离还可能从父亲节点那更新。那么再dfs从父亲节点更新子节点的最长距离,这个时候,父亲节点的最长可能是通过当前要更新的子节点,那么就用次长路去更新。复杂度O(n);
  1 #include<iostream>
2 #include<string.h>
3 #include<algorithm>
4 #include<queue>
5 #include<math.h>
6 #include<stdlib.h>
7 #include<stack>
8 #include<stdio.h>
9 #include<ctype.h>
10 #include<map>
11 #include<vector>
12 #include<map>
13 using namespace std;
14 typedef struct acc
15 {
16 int id;
17 int val;
18 } ak;
19 vector<ak>vec[100005];
20 bool vis[100005];
21 typedef struct node
22 {
23 int id;
24 int mcost;
25 int scost;
26 int mid;
27 int sid;
28 node()
29 {
30 mcost = 0;
31 scost = 0;
32 mid = -1;
33 sid = -1;
34 }
35 } ss;
36 ss dp[100005];
37 int father[1000005];
38 void dfs1(int n);
39 void dfs2(int n);
40 int main(void)
41 {
42 int n,m;
43 while(scanf("%d",&n)!=EOF)
44 {
45 memset(father,-1,sizeof(father));
46 int i,j;
47 memset(dp,0,sizeof(dp));
48 for(i = 0; i < 100005; i++)
49 vec[i].clear();
50 for(i = 2; i <= n; i++)
51 {
52 int id,val;
53 scanf("%d %d",&id,&val);
54 ak a;
55 a.val = val;
56 a.id = i;
57 father[i] = id;
58 vec[id].push_back(a);
59 }
60 dfs1(1);
61 dfs2(1);
62 for(i = 1; i <= n; i++)
63 {
64 printf("%d\n",dp[i].mcost);
65 }
66 }
67 return 0;
68 }
69 void dfs1(int n)
70 {
71 for(int i = 0; i < vec[n].size(); i++)
72 {
73 ak d = vec[n][i];
74 {
75 dfs1(d.id);
76 if(dp[d.id].mcost+d.val > dp[n].mcost)
77 {
78 dp[n].scost = dp[n].mcost;
79 dp[n].sid = dp[n].mid;
80 dp[n].mcost = dp[d.id].mcost+d.val;
81 dp[n].mid = d.id;
82 }
83 else if(dp[d.id].mcost+d.val > dp[n].scost)
84 {
85 dp[n].scost = dp[d.id].mcost+d.val;
86 dp[n].sid = d.id;
87 }
88 }
89 }
90 }
91 void dfs2(int n)
92 {
93 for(int i = 0; i < vec[n].size(); i++)
94 {
95 ak d = vec[n][i];
96 if(dp[n].mid!=d.id)
97 {
98 if(dp[n].mcost + d.val > dp[d.id].mcost)
99 {
100 dp[d.id].scost = dp[d.id].mcost;
101 dp[d.id].sid = dp[d.id].mid;
102 dp[d.id].mcost = dp[n].mcost + d.val;
103 dp[d.id].mid = n;
104 }
105 else if(dp[n].mcost + d.val > dp[d.id].scost)
106 {
107 dp[d.id].scost = dp[n].mcost + d.val;
108 dp[d.id].sid = n;
109 }
110 }
111 else
112 {
113 if(dp[n].scost + d.val > dp[d.id].mcost)
114 {
115 dp[d.id].scost = dp[d.id].mcost;
116 dp[d.id].sid = dp[d.id].mid;
117 dp[d.id].mcost = dp[n].scost + d.val;
118 dp[d.id].mid = n;
119 }
120 else if(dp[n].scost + d.val > dp[d.id].scost)
121 {
122 dp[d.id].scost = dp[n].scost + d.val;
123 dp[d.id].sid = n;
124 }
125 }
126 dfs2(d.id);
127 }
128 }
 

computer(hdu2196)的更多相关文章

  1. Computer(HDU2196+树形dp+树的直径)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2196 题目: 题意:有n台电脑,每台电脑连接其他电脑,第i行(包括第一行的n)连接u,长度为w,问你每 ...

  2. [HDU2196]Computer(DP)

    传送门 题意 给出一棵树,求离每个节点最远的点的距离 思路 对于我这种菜鸡,真是难啊. 每个点的距离它最远的点,除了在它子树中的,还有在它子树之外的,所以这几个状态都得表示出来. 我们能够很简单的求出 ...

  3. MySQL数据库的安装与配置(windows)

    MySQL是目前最为流行的开放源码的数据库,是完全网络化的跨平台的关系型数据库系统,它是由瑞典MySQLAB公司开发,目前属于Oracle公司.任何人都能从Internet下载MySQL软件,而无需支 ...

  4. 【FSFA 读书笔记】Ch 2 Computer Foundatinons(2)

    Hard Disk Technology 1. 机械硬盘内部构造 几个重要概念:Sector(扇区),Head(读写头),Track(磁道),Cylinder(柱面). 如果一个文件比较大,磁盘的写入 ...

  5. hdu 2196(Computer 树形dp)

    A school bought the first computer some time ago(so this computer's id is 1). During the recent year ...

  6. Multiple View Geometry in Computer Vision Second Edition by Richard Hartley 读书笔记(二)

    // Chapter 2介绍的是2d下的投影变换,摘录下了以下定理 Result 2.1. The point x lies on the line l if and only if xTl = 0. ...

  7. 【FSFA 读书笔记】Ch 2 Computer Foundatinons(1)

    Data Organization 1. 进制转换. 按照正常的书写顺序写一个数字(无论多少进制),其中最左边的列称为“最高有效符号”,最右边的列称为“最低有效符号”. (The right-most ...

  8. 图像分类(三)GoogLenet Inception_v3:Rethinking the Inception Architecture for Computer Vision

    Inception V3网络(注意,不是module了,而是network,包含多种Inception modules)主要是在V2基础上进行的改进,特点如下: 将滤波器尺寸(Filter Size) ...

  9. 【Network architecture】Rethinking the Inception Architecture for Computer Vision(inception-v3)论文解析

    目录 0. paper link 1. Overview 2. Four General Design Principles 3. Factorizing Convolutions with Larg ...

随机推荐

  1. ubuntu终端ls颜色配置

    buntu中没有LS_COLORS,/etc/目录中也没有DIR_COLORS,所以这里使用dircolor命令加以解决 1. 利用dircolors命令,查看我们的系统当前的文件名称显示颜色的值,然 ...

  2. kubernetes部署kube-scheduler服务

    同样的分非认证授权和认证授权: 非认证授权: cat > /lib/systemd/system/kube-scheduler.service <<EOF [Unit] Descri ...

  3. account, accomplish, accumulate

    account account从词源和count(数数)有关,和computer也有点关系.calculate则和'stone used in counting'有关.先看两个汉语的例子:1. 回头再 ...

  4. pymongdb入门

    Pymongo入门 安装 pip install pymongo 连接 实际就是实例化一个客户端对象,然后客户端对象中指定一个库作为库对象,库对象中的集合对象就是之后常用来执行操作的对象 1 ''' ...

  5. CRLF漏洞浅析

    部分情况下,由于与客户端存在交互,会形成下面的情况 也就是重定向且Location字段可控 如果这个时候,可以向Location字段传点qqgg的东西 形成固定会话 但服务端应该不会存储,因为后端貌似 ...

  6. 【leetcode】1293 .Shortest Path in a Grid with Obstacles

    You are given an m x n integer matrix grid where each cell is either 0 (empty) or 1 (obstacle). You ...

  7. c#中实现串口通信的几种方法

    c#中实现串口通信的几种方法 通常,在C#中实现串口通信,我们有四种方法: 第一:通过MSCOMM控件这是最简单的,最方便的方法.可功能上很难做到控制自如,同时这个控件并不是系统本身所带,所以还得注册 ...

  8. 数组实现堆栈——Java实现

    1 package struct; 2 3 4 //接口 5 interface IArrayStack{ 6 //栈的容量 7 int length(); 8 //栈中元素个数(栈大小) 9 int ...

  9. tableView和tableViewCell的背景颜色问题

    当在tableView中添加cell数据时,我们会发现原本设置的tableView的背景颜色不见了,这是因为加载cell数据时,tableView的背景颜色被cell数据遮盖住了,此时,可以通过设置c ...

  10. OC-代理,字符串

    总结 编号 标题 内容 一 protocol protocol 基本概念/语法格式/protocol和继承区别/使用注意/基协议/@required和@optional关键字/类型限制 二 代理设计模 ...