网格搜索与k近邻算法中更多超参数

网格搜索与k近邻算法中更多超参数

网络搜索

前笔记中使用的for循环进行的网格搜索的方式,我们可以发现不同的超参数之间是存在一种依赖关系的,像是p这个超参数,只有在 weights="uniform"才有意义

在sklearn中有一种封装好的网格搜索,grid search

我们首先设置一个数组,其内容可以当成字典来看待

对于第一组参数而言

   'weights':["uniform"],
'n_nrightbors':[i for i in range (1,11)]

对于第二组参数而言

   'weights':['distance'],
'n_neightbors':[i for i in range(1,11)],
'p': [i for i in range (1,6)]

这样我们就定义好了我们需要的参数的集合,我们也不难发现,超参数的依赖被我们通过这个集合中放在同一个字典中,来表示这种依赖关系

先创建出一个默认的不传任何参数的KNeighborsClassifier(),然后我们创建出一个knn_clf,通过调用sklearn中的网格搜索方法

  from sklearn.model_selection import GridSearchCV

待加载进来之后,再创建一个对应的实例对象,其中我们需要传入两个参数

  grid_search = GridSearchCV(knn_clf, param_grid)

然后我们就要基于训练数据集来尝试的寻找最佳的模型(fit操作)

  grid_search.fit(X_train,y_train)

使用grid_search.best_estimator_即可查看到最佳的模型所对应的参数

与之前结果不一样的原因是因为网格搜索的方式更加的复杂,还有交叉验证的方式参与其中,准确度更高

其他的情况还有

我们要想拿到最佳参数对应的分类器可以直接

  knn_clf = grid_search.best_estimator_

这样我们就可以直接使用knn_clf来进行预测了

结果:

  knn_clf.predict(X_test)

准确率:

  knn_clf.score(X_test, y_test)

GridSearchCV中的重要参数

n_jobs参数

在并行处理的时候,是可以给你的计算机来分配几个核来处理,默认为1,可以直接传入-1,代表直接将全部的核心都用于操作

verbose参数

这是一个输出参数,可以在你运行的情况下进行输出运行的情况,其可以传入一个整数,值越大,信息越详细

更多的超参数

事实上,knn还有更多的超参数

比如更多的距离定义

●向量空间余弦相似度Cosine Similarity

●调整余弦相似度Adjusted Cosine Similarity

●皮尔森相关系数Pearson Correlation Coefficient

●Jaccard相似系数Jaccard Coefficient

我们可以修改metric来更改对距离的定义,其默认的是明科夫斯基距离

【笔记】KNN之网格搜索与k近邻算法中更多超参数的更多相关文章

  1. 网格搜索与K近邻中更多的超参数

    目录 网格搜索与K近邻中更多的超参数 一.knn网格搜索超参寻优 二.更多距离的定义 1.向量空间余弦相似度 2.调整余弦相似度 3.皮尔森相关系数 4.杰卡德相似系数 网格搜索与K近邻中更多的超参数 ...

  2. GridSearchCV网格搜索得到最佳超参数, 在K近邻算法中的应用

    最近在学习机器学习中的K近邻算法, KNeighborsClassifier 看似简单实则里面有很多的参数配置, 这些参数直接影响到预测的准确率. 很自然的问题就是如何找到最优参数配置? 这就需要用到 ...

  3. 1.K近邻算法

    (一)K近邻算法基础 K近邻(KNN)算法优点 思想极度简单 应用数学知识少(近乎为0) 效果好 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 图解K近邻算法 上图是以 ...

  4. 机器学习(四) 机器学习(四) 分类算法--K近邻算法 KNN (下)

    六.网格搜索与 K 邻近算法中更多的超参数 七.数据归一化 Feature Scaling 解决方案:将所有的数据映射到同一尺度 八.scikit-learn 中的 Scaler preprocess ...

  5. 一看就懂的K近邻算法(KNN),K-D树,并实现手写数字识别!

    1. 什么是KNN 1.1 KNN的通俗解释 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1 ...

  6. 机器学习——KNN算法(k近邻算法)

    一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...

  7. Python3入门机器学习 - k近邻算法

    邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代 ...

  8. 02-18 scikit-learn库之k近邻算法

    目录 scikit-learn库之k近邻算法 一.KNeighborsClassifier 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 方法 1.4.1 kneighbors([X, n ...

  9. KNN K~近邻算法笔记

    K~近邻算法是最简单的机器学习算法.工作原理就是:将新数据的每一个特征与样本集中数据相应的特征进行比較.然后算法提取样本集中特征最相似的数据的分类标签.一般来说.仅仅提取样本数据集中前K个最相似的数据 ...

随机推荐

  1. Docker:redis容器使用redis.conf启动失败,不报错

    查看redis.conf配置信息 daemonize no :redis默认是不作为守护进程使用的,这也就是说为什么在你不修改配置文件时直接使用redis-server /redis/redis.co ...

  2. linux安装subversion

    原文: https://www.cnblogs.com/liuxianan/p/linux_install_svn_server.html 安装 使用yum安装非常简单: yum install su ...

  3. 关于mysql binlog二进制

    binlog 在mysql中,当发生数据变更时,都会将变更数据的语句,通过二进制形式,存储到binlog日志文件中. 通过binlog文件,你可以查看mysql一段时间内,对数据库的所有改动. 也可以 ...

  4. servlet核心技术2

    一.Servet 与 JDBC 在Servlet中可以使用JDBC技术访问数据库,查询DB数据,然后生成显示页面,接收请求参数,然后对DB操作 为了方便重用和便于维护等目的,经常会采用DAO(Data ...

  5. RWLock——一种细粒度的Mutex互斥锁

    RWMutex -- 细粒度的读写锁 我们之前有讲过 Mutex 互斥锁.这是在任何时刻下只允许一个 goroutine 执行的串行化的锁.而现在这个 RWMutex 就是在 Mutex 的基础上进行 ...

  6. ORB随便记一记

    论文摘取 (这部分看的是泡泡机器人的翻译) 基于特征点.单目.完全自动初始化,基于PTAM框架. 相关工作 A.位置识别(大概是用于回环检测) bags of words FAB-map DBOW2 ...

  7. modelsim 独立仿真vivado的IP核及仿真脚本

    Modelsim独立仿真vivado的IP 最近一直在做local dimming项目的FPGA硬件实现,算法的其中一步就是直方图统计,即数字图像的某一灰度级的像素数,这个直方图的源码找了半天才搞到, ...

  8. Hive——join的使用

    Hive--join的使用 hive中常用的join有:inner join.left join .right join .full join.left semi join.cross join.mu ...

  9. uiautomator2 入门教程

    一.前言 在 Android 自动化测试方面,Google 提供了一个基于 Java 开发的库 UiAutomator,基本上支持所有的 Android 事件操作,使用简单. 在此基础上,有大佬开发出 ...

  10. RHEL7配置端口转发和地址伪装

    说明:这里是Linux服务综合搭建文章的一部分,本文可以作为Linux上使用firewalld做端口转发和地址伪装以及外网访问内网的参考. 注意:这里所有的标题都是根据主要的文章(Linux基础服务搭 ...