Codeforces 848D - Shake It!(DP)
hot tea 一道。
首先我们考虑这个奇奇怪怪的最小割有什么等价的表达。不难发现,如果我们选择了 \(S\to T\) 这条边并加入了一个新的节点 \(u\),那么就会出现两条边 \(S\to u,u\to T\)。我们考虑把 \(S\) 和 \(u\) 分别当作新的源点和汇点重复上面的过程,假设 \(S\to u\) 产生的流量为 \(f_1\),我们再把 \(u,T\) 也分别当作新的源汇并产生 \(f_2\) 的流量,那么新产生的这个节点 \(u\) 对原图的最小割,即最大流产生了 \(\min(f_1,f_2)\) 的贡献。也就是说,当我们选择 \(S\to T\) 这条边并新添了一个点 \(u\),就等价于将原问题拆成了 \(S\to u\) 和 \(u\to T\) 两个子问题求解,这就天然地形成了 DP 的模型。
考虑 \(f_{n,m}\) 表示对于一张初始只有 \(S,T\) 两个点和一条边 \(S\to T\) 的图进行 \(n\) 次操作后能够得到多少张最小割为 \(m\) 的图,再设 \(g_{n,m}\) 表示对于一张初始有三个点 \(S,T,u\) 和两条边 \(S\to u\) 和 \(u\to T\) 的图在进行 \(n-1\) 次操作后可以得到多少个最小割为 \(m\) 的图,转移就考虑对 \(S\to u\) 长出的子图和 \(u\to T\) 长出的子图分别进行了多少次操作,设为 \(k\) 和 \(n-1-k\),那么转移就是一个 \(\min\) 卷积的形式,即 \(g_{n,m}=\sum\limits_{k=0}^{n-1}\sum\limits_{\min(x,y)=m}f_{k,x}f_{n-1-k,y}\),众所周知,\(\min\) 卷积可以通过处理后缀和做到线性,即假设 \(sf_{n,m}\) 为 \(f_{n,m}\) 的后缀和,\(sg_{n,m}\) 也同理,那么 \(sg_{n,m}=\sum\limits_{k=0}^{n-1}sf_{k,m}sf_{n-1-k,m}\),再一遍差分即可求出真正的 \(g\)。这样我们就实现了 \(f\to g\)。
接下来考虑怎样 \(g\to f\),方便起见,我们将所有 \(S\to u,u\to T\) 进行 \(n-1\) 次操作得到的最小割为 \(m\) 的图称作一个“\((n,m)\) 结构”,将所有 \((n,m)\) 结构的总体称作“\((n,m)\) 类”,那么我们考虑一个背包的思想,考虑所有 \((i,j)\) 类对 \(f_{n,m}\) 的贡献,那么我们枚举用了多少个 \((i,j)\) 类中的结构,设为 \(k\),那么有转移 \(f_{n,m}\leftarrow f_{n-ki,m-kj}·\dbinom{g_{i,j}+k-1}{k}\),其中后面那个组合数可以用隔板法来解释,具体来说就是设 \((i,j)\) 类第 \(t\) 个结构出现了 \(x_t\) 次,那么由于“经过置换得到的图视为相同”这一条件的存在,一组 \((x_1,x_2,\cdots,x_{g_{i,j}})\) 就能唯一确定一张图,方案数就是 \(x_1+x_2+\cdots+x_{g_{i,j}}=k\) 的解的个数,根据隔板法可知该值等于 \(\dbinom{g_{i,j}+k-1}{k}\)。
还有一个小问题就是 DP 转移的顺序,如果我们不钦定 DP 转移的顺序就会算重。因此我们考虑从小到大枚举 \(i\) 再从小到大枚举 \(j\),算出 \(g_{i,j}\) 之后再用多重背包的方式松弛所有 \(f_{n,m}\),不难发现这样我们肯定会按照 \((i,j)\) 这样的二元组的字典序顺序进行多重背包,也就不会担心算重的问题了。这就有点类似于子集卷积那种“半在线”的感觉,学过子集卷积/半在线卷积的应该会比较好理解。
时间复杂度上界大概是 \(n^4\ln n\),因为后面枚举 \(k\) 那一维复杂度大概是调和级数的。
const int MAXN=50;
const int MOD=1e9+7;
int n,m,f[MAXN+5][MAXN+5],sf[MAXN+5][MAXN+5],g[MAXN+5][MAXN+5],sg[MAXN+5][MAXN+5];
int inv[MAXN+5];
int main(){
scanf("%d%d",&n,&m);f[0][1]=sf[0][1]=1;
for(int i=(inv[0]=inv[1]=1)+1;i<=MAXN;i++) inv[i]=1ll*inv[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++){
for(int j=1;j<=n+1;j++) for(int k=0;k<=i-1;k++)
sg[i][j]=(sg[i][j]+1ll*sf[k][j]*sf[i-1-k][j])%MOD;
for(int j=1;j<=n+1;j++) g[i][j]=(sg[i][j]-sg[i][j+1]+MOD)%MOD;
// for(int j=1;j<=n+1;j++) printf("g %d %d %d\n",i,j,g[i][j]);
for(int j=1;j<=n+1;j++){
for(int k=n+1;k;k--) for(int l=n+1;l;l--){
int mul=1;
for(int t=1;t*i<=k&&t*j<=l;t++){
mul=1ll*mul*(g[i][j]+t-1)%MOD*inv[t]%MOD;
f[k][l]=(f[k][l]+1ll*f[k-t*i][l-t*j]*mul)%MOD;
}
}
}
for(int j=n+1;j;j--) sf[i][j]=(sf[i][j+1]+f[i][j])%MOD;
} printf("%d\n",f[n][m]);
return 0;
}
Codeforces 848D - Shake It!(DP)的更多相关文章
- Codeforces Gym101341K:Competitions(DP)
http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...
- codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 1051 D.Bicolorings(DP)
Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...
- Codeforces 1207C Gas Pipeline (dp)
题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...
- Codeforces 704C - Black Widow(dp)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...
- Codeforces 682B New Skateboard(DP)
题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...
- Codeforces 543D Road Improvement(DP)
题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...
- Codeforces 543C Remembering Strings(DP)
题意比较麻烦 见题目链接 Solution: 非常值得注意的一点是题目给出的范围只有20,而众所周知字母表里有26个字母.于是显然对一个字母进行变换后是不影响到其它字符串的. 20的范围恰好又是常见状 ...
随机推荐
- 更好的 java 重试框架 sisyphus 入门简介
What is Sisyphus sisyphus 综合了 spring-retry 和 gauva-retrying 的优势,使用起来也非常灵活. 为什么选择这个名字 我觉得重试做的事情和西西弗斯很 ...
- 爬虫逆向基础,理解 JavaScript 模块化编程 webpack
关注微信公众号:K哥爬虫,QQ交流群:808574309,持续分享爬虫进阶.JS/安卓逆向等技术干货! 简介 在分析一些站点的 JavaScript 代码时,比较简单的代码,函数通常都是一个一个的,例 ...
- Kettle的安装及简单使用
Kettle的安装及简单使用 目录 Kettle的安装及简单使用 一.kettle概述 二.kettle安装部署和使用 Windows下安装 案例1:MySQL to MySQL 案例2:使用作业执行 ...
- 【UE4 设计模式】原型模式 Prototype Pattern
概述 描述 使用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象.如孙悟空猴毛分身.鸣人影之分身.剑光分化.无限剑制 原型模式是一种创建型设计模式,允许一个对象再创建另外一个可定制的对象, ...
- 剑指offer:JZ9 用两个栈实现队列
JZ9 用两个栈实现队列 描述 用两个栈来实现一个队列,使用n个元素来完成 n 次在队列尾部插入整数(push)和n次在队列头部删除整数(pop)的功能. 队列中的元素为int类型.保证操作合法,即保 ...
- 算法:N-gram语法
一.N-gram介绍 n元语法(英语:N-gram)指文本中连续出现的n个语词.n元语法模型是基于(n - 1)阶马尔可夫链的一种概率语言模型,通过n个语词出现的概率来推断语句的结构.这一模型被广泛应 ...
- MySQL 的架构与组件
MySQL 的逻辑架构图设计图 连接/线程处理:管理客户端连接/会话[mysql threads] 解析器:通过检查SQL查询中的每个字符来检查SQL语法,并为每个SQL查询生成 SQL_ID. 此 ...
- Android 服务名称规则invalid service name 限制16字符以内
今天调试网络服务的时候为了区分,修改了原有服务名称,同时新增了两个服务. 系统运行的时候报错找不到对应的服务 init: no such service 'wpa_supplicant_common' ...
- binary-tree-postorder-traversal leetcode C++
Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary ...
- LCA-离线tarjan模板
/* *算法引入: *树上两点的最近公共祖先; *对于有根树的两个结点u,v,最近公共祖先LCA(T,u,v)表示一个结点x,满足x是u,v的祖先且x的深度尽可能大; *对于x来说,从u到v的路径一定 ...