Atcoder 2444 - JOIOI 王国(二分)
记 \(mxi\) 为 IOI 国海拔的最大值,\(mni\) 为 IOI 国海拔的最小值,\(mxj\) 为 JOI 国海拔的最大值,\(mnj\) 为 JOI 国海拔的最小值。
不难发现 \(mxi,mni,mxj,mnj\) 中有 2 个值已经确定下来了,\(\max(mxi,mxj)\) 一定等于矩阵的全局最大值 \(mx\),\(\min(mni,mnj)\) 一定等于矩阵的全局最小值 \(mn\)。
如果我们把海拔最高和最低的点分配到了同一个国家中,答案即为 \(mx-mn\)。
如果我们把海拔最高和最低的点分配到了不同的国家中,我们不妨假设海拔最高的点分配到了 JOI 国,海拔最低的点分配到了 IOI 国。
二分答案。
假设二分到 \(mid\),那么所有 IOI 国的城市的海拔 \(\leq mn+mid\),所有 JOI 国的城市的海拔 \(\geq mx-mid\)。
也就是所有海拔 \(>mn+mid\) 的城市全部属于 JOI 国,所有海拔 \(<mx-mid\) 的城市全部属于 IOI 国。
此时题目转化为:已知某些点属于 IOI 国,某些点属于 JOI 国,判断是否存在一种合法的分配方案。
根据题意两国的地形一定呈阶梯分部。所以可以分出四种情况,这里以 JOI 国占据左上角,IOI 国占据右下角为例。
考虑第 \(i\) 两国之间的分界线 \(b_i\),那么一定有 \(b_i \leq b_{i-1}\),而第 \(i\) 行 \(b_i\) 左边肯定都是 JOI 国的城市,第 \(i\) 行右边肯定都是 IOI 国的城市,根据这个你可以求出 \(b_i\) 的最大值和最小值,然后判断是否有交集即可。
#include <bits/stdc++.h>
using namespace std;
const int MAXN=2e3+5;
int n,m,a[MAXN][MAXN],mx=0,mn=0x3f3f3f3f;
int l[MAXN],r[MAXN];
bool check(int mid){
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
bool flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
return 0;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) mx=max(mx,a[i][j]),mn=min(mn,a[i][j]);
int l=0,r=mx-mn-1,ans=mx-mn;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
} printf("%d\n",ans);
return 0;
}
Atcoder 2444 - JOIOI 王国(二分)的更多相关文章
- JOIOI王国 - 二分+贪心
题面 题解 通过一句经典的话"最大值的最小值" 我判断它是二分题, 不难发现,整个图形中两个省的分界线是一条单调不递减或单调不递增的折线. 而且,越到后来它的最大值只会越来越大,最 ...
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- 【2018.9.20】JOI 2017 Final T3「JOIOI 王国 / The Kingdom of JOIOI」
题目链接 题目描述 JOIOI 王国是一个 $H$ 行 $W$ 列的长方形网格,每个 $1\times 1$ 的子网格都是一个正方形的小区块.为了提高管理效率,我们决定把整个国家划分成两个省 $JOI ...
- Atcoder D - Widespread (二分)
题目链接:http://abc063.contest.atcoder.jp/tasks/arc075_b 题解:直接二分答案然后再判断(a-b)来替代不足的.看代码比较好理解,水题. #include ...
- AtCoder AGC032E Modulo Pairing (二分、贪心与结论)
题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_e 题解 猜结论好题. 结论是: 按\(a_i\)从小到大排序之后,一定存在一种最优解,使得以 ...
- AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)
Problem Statement You are given two integer sequences, each of length N: a1,…,aN and b1,…,bN. There ...
- loj#2334 「JOI 2017 Final」JOIOI 王国
分析 二分答案 判断左上角是否满足 为了覆盖所有范围 我们依次把右下角,左上角,右上角移动到左上角 代码 #include<bits/stdc++.h> using namespace s ...
- The Accomodation of Students HDU - 2444(判断二分图 + 二分匹配)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
随机推荐
- 自定义ConditionalOnXX注解
一.Conditional注解介绍 对SpringBoot有足够了解的小伙伴应该都用过Conditional系列注解,该注解可用在类或者方法上用于控制Bean的初始化. 常用的Conditional注 ...
- 关于keras框架的介绍以及操作使用
Keras 是一个 Python 深度学习框架,可以方便地定义和训练几乎所有类型的深度学习模型.Keras 最开始是为研究人员开发的,其目的在于快速实验.我们可以进入网站主页 - Keras 中文文档 ...
- JSP(java server pages)安装开发和执行环境
JSP是一种动态网页技术标准. 它是在传统的网页HTML文件中插入Java程序段(Scriptlet)和JSP标记(tag)的.jsp文件: java程序段:操纵数据库,重新定向网页,发送email等 ...
- Linux C语言链表你学会了吗?
链表是一种常见的基础数据结构,结构体指针在这里得到了充分的利用.链表可以动态的进行存储分配,也就是说,链表是一个功能极为强大的数组,他可以在节点中定义多种数据类型,还可以根据需要随意增添,删除,插入节 ...
- 攻防世界 web2.robots
输入ip/robots.txt,显示出了flag目录,直接访问.
- 洛谷 P4867 Gty的二逼妹子序列
链接: P4867 题意: 给出长度为 \(n(1\leq n\leq 10^5)\) 的序列 \(s\),保证\(1\leq s_i\leq n\).有 \(m(1\leq m\leq 10^6)\ ...
- [CSP-S 2021] 廊桥分配 题解
写篇题解来纪念我炸掉的CSP 唯一会做的题代码写挂了(痛苦面具 思路 我看到这道题第一眼想到的是线段树,感觉可以用线段树维护飞机入站到出战的这段时间,想了半天想不到代码怎么写. 国内机场与国外机场要分 ...
- hdu 1058 Humble Numbers(构造?枚举?)
题意: 一个数的质因子如果只是2,3,5,7中的若干个.则这个数叫做humble number. 例如:1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 1 ...
- linux 内核源代码情景分析——用户堆栈的扩展
上一节中,我们浏览了一次因越界访问而造成映射失败从而引起进程流产的过程,不过有时候,越界访问时正常的.现在我们就来看看当用户堆栈过小,但是因越界访问而"因祸得福"得以伸展的情景. ...
- linux 内核源代码情景分析——i386 的页式内存管理机制
可以看出,在页面目录中共有210 = 1024个目录项,每个目录项指向一个页面表,而在每个页面表中又共有1024个页面描述项. 由图看出来,从线性地址到物理地址的映射过程为: 1)从CR3取得页面目录 ...