Atcoder 2444 - JOIOI 王国(二分)
记 \(mxi\) 为 IOI 国海拔的最大值,\(mni\) 为 IOI 国海拔的最小值,\(mxj\) 为 JOI 国海拔的最大值,\(mnj\) 为 JOI 国海拔的最小值。
不难发现 \(mxi,mni,mxj,mnj\) 中有 2 个值已经确定下来了,\(\max(mxi,mxj)\) 一定等于矩阵的全局最大值 \(mx\),\(\min(mni,mnj)\) 一定等于矩阵的全局最小值 \(mn\)。
如果我们把海拔最高和最低的点分配到了同一个国家中,答案即为 \(mx-mn\)。
如果我们把海拔最高和最低的点分配到了不同的国家中,我们不妨假设海拔最高的点分配到了 JOI 国,海拔最低的点分配到了 IOI 国。
二分答案。
假设二分到 \(mid\),那么所有 IOI 国的城市的海拔 \(\leq mn+mid\),所有 JOI 国的城市的海拔 \(\geq mx-mid\)。
也就是所有海拔 \(>mn+mid\) 的城市全部属于 JOI 国,所有海拔 \(<mx-mid\) 的城市全部属于 IOI 国。
此时题目转化为:已知某些点属于 IOI 国,某些点属于 JOI 国,判断是否存在一种合法的分配方案。
根据题意两国的地形一定呈阶梯分部。所以可以分出四种情况,这里以 JOI 国占据左上角,IOI 国占据右下角为例。
考虑第 \(i\) 两国之间的分界线 \(b_i\),那么一定有 \(b_i \leq b_{i-1}\),而第 \(i\) 行 \(b_i\) 左边肯定都是 JOI 国的城市,第 \(i\) 行右边肯定都是 IOI 国的城市,根据这个你可以求出 \(b_i\) 的最大值和最小值,然后判断是否有交集即可。
#include <bits/stdc++.h>
using namespace std;
const int MAXN=2e3+5;
int n,m,a[MAXN][MAXN],mx=0,mn=0x3f3f3f3f;
int l[MAXN],r[MAXN];
bool check(int mid){
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
bool flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[0]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=n;i;i--) l[i]=max(l[i],l[i+1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=1;i<=n;i++) r[i]=min(r[i-1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
memset(l,0,sizeof(l));memset(r,0,sizeof(r));r[n+1]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]<mx-mid) l[i]=max(l[i],j);
for(int i=1;i<=n;i++) l[i]=max(l[i],l[i-1]);
for(int i=1;i<=n;i++) r[i]=m+1;
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) if(a[i][j]>mn+mid) r[i]=min(r[i],j);
for(int i=n;i;i--) r[i]=min(r[i+1],r[i]);
flg=1;for(int i=1;i<=n;i++) flg&=(l[i]<r[i]);if(flg) return 1;
return 0;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) mx=max(mx,a[i][j]),mn=min(mn,a[i][j]);
int l=0,r=mx-mn-1,ans=mx-mn;
while(l<=r){
int mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
} printf("%d\n",ans);
return 0;
}
Atcoder 2444 - JOIOI 王国(二分)的更多相关文章
- JOIOI王国 - 二分+贪心
题面 题解 通过一句经典的话"最大值的最小值" 我判断它是二分题, 不难发现,整个图形中两个省的分界线是一条单调不递减或单调不递增的折线. 而且,越到后来它的最大值只会越来越大,最 ...
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- 「题解」JOIOI 王国
「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...
- 【2018.9.20】JOI 2017 Final T3「JOIOI 王国 / The Kingdom of JOIOI」
题目链接 题目描述 JOIOI 王国是一个 $H$ 行 $W$ 列的长方形网格,每个 $1\times 1$ 的子网格都是一个正方形的小区块.为了提高管理效率,我们决定把整个国家划分成两个省 $JOI ...
- Atcoder D - Widespread (二分)
题目链接:http://abc063.contest.atcoder.jp/tasks/arc075_b 题解:直接二分答案然后再判断(a-b)来替代不足的.看代码比较好理解,水题. #include ...
- AtCoder AGC032E Modulo Pairing (二分、贪心与结论)
题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_e 题解 猜结论好题. 结论是: 按\(a_i\)从小到大排序之后,一定存在一种最优解,使得以 ...
- AtCoder Regular Contest 092 Two Sequences AtCoder - 3943 (二进制+二分)
Problem Statement You are given two integer sequences, each of length N: a1,…,aN and b1,…,bN. There ...
- loj#2334 「JOI 2017 Final」JOIOI 王国
分析 二分答案 判断左上角是否满足 为了覆盖所有范围 我们依次把右下角,左上角,右上角移动到左上角 代码 #include<bits/stdc++.h> using namespace s ...
- The Accomodation of Students HDU - 2444(判断二分图 + 二分匹配)
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
随机推荐
- 脚本注入3(blind)
布尔盲注适用于任何情况回显都不变的情况. (由此,可以看出,回显啥的其实都不重要,最重要的是判断注入点.只要找到注入点了,其他的都是浮云.) 在操作上,时间盲注还稍微简单一点:它不需要像布尔盲注那样, ...
- UltraSoft - Beta - Scrum Meeting 8
Date: May 24th, 2020. Scrum 情况汇报 进度情况 组员 负责 今日进度 q2l PM.后端 记录Scrum Meeting Liuzh 前端 暂无 Kkkk 前端 暂无 王f ...
- Spring Cloud Alibaba 的服务注册与发现
Spring Cloud Alibaba 服务发现例子 一.需求 1.提供者完成的功能 2.消费者完成的功能 3.可以附加的额外配置 二.实现步骤 1.总的依赖引入 2.服务提供者和发现者,引入服务发 ...
- 嵌入式物联网之SPI接口原理与配置
本实验采用W25Q64芯片 W25Q64是华邦公司推出的大容量SPI FLASH产品,其容量为64Mb.该25Q系列的器件在灵活性和性能方面远远超过普通的串行闪存器件.W25Q64将8M字节的容量分为 ...
- 攻防世界 杂项14.Erik-Baleog-and-Olaf
下载解压后用notepad++打开 发现是一个PNG的图片文件,该后缀,再用Stegsolve打开看一下, 发现一个残缺二维码,果断在线PS补全 扫码得到flag flag{#justdiffit}
- stat命令的实现
任务详情 学习使用stat(1),并用C语言实现 提交学习stat(1)的截图 man -k ,grep -r的使用 伪代码 产品代码 mystate.c,提交码云链接 测试代码,mystat 与st ...
- (转)Linux中的文件描述符与打开文件之间的关系
转:http://blog.csdn.net/cywosp/article/details/38965239 1. 概述 在Linux系统中一切皆可以看成是文件,文件又可分为:普通文件.目录文 ...
- Codeforces Round #747 (Div. 2)题解
谢天谢地,还好没掉分,还加了8分,(8分再小也是加啊)前期刚开始有点卡,不过在尽力的调整状态之后,还是顺利的将前面的水题过完了,剩下的E2和F题就过不去了,估计是能力问题,自己还是得认真补题啦. E2 ...
- 一次fork引发的惨案!
"你还有什么要说的吗?没有的话我就要动手了",kill程序最后问道. 这一次,我没有再回答. 只见kill老哥手起刀落,我短暂的一生就这样结束了··· 我是一个网络程序,一直以来都 ...
- AndroidStudio中debug.keystore文件不存在解决办法
Android项目丢失了debug.keystore,直接重新生存一个key. 在cmd下,进入C:\Users\Administrator\.android目录执行命令如下: keytool -g ...