Atcoder 题面传送门 & 洛谷题面传送门

神仙调整+乱搞题。

首先某些人(including me)一看到最大值最小就二分答案,事实上二分答案对这题正解没有任何启发。

首先将 \(a_i\) 从小到大排序。我们考虑将分配的点对看作一条条线,对于 \(a_x+a_y<M\) 的点对 \((x,y)\) 我们在 \(x,y\) 之间连一条蓝线,对于 \(a_x+a_y\ge M\) 的点对我们在 \(x,y\) 之间连一条红线。

先抛结论,再给证明:如在最优分配方式中,我们的连线方式肯定是长这样的:

证明:使用调整法,证明上述命题,等价于证明对于以下 \(7\) 种情况,左边的情况都可以被调整为右边的情况且答案不会更劣(这里借用了粉兔题解中的图):

我们考虑一一对其进行证明,为了表述方便我们统一假设从左到右四个点分别为 \(a_p,a_q,a_r,a_s\),则显然 \(a_p\le a_q\le a_r\le a_s\):

  1. 对于左边第一个的情况,左边的最大值为 \(\max(a_p+a_q,a_r+a_s)=a_r+a_s\),右边的最大值为 \(\max(a_p+a_s,a_q+a_r)\),而由于 \(a_p+a_s\le a_r+a_s,a_q+a_r\le a_r+a_s\),故右边答案不会比左边更劣。
  2. 对于右边第一个的情况,左边的最大值为 \(\max(a_p+a_r,a_q+a_s-M)\),而由于 \(a_s-M<0\),故 \(a_q+a_s-M<a_q<a_p+a_r\),故左边的最大值实际上是 \(a_p+a_r\),右边的最大值为 \(\max(a_p+a_q,a_r+a_s-M)\),而显然 \(a_p+a_q\le a_p+a_r,a_r+a_s-M<a_r\le a_p+a_r\),故右边答案不会比左边更劣,同时又因为 \(a_p+a_q\le a_p+a_r<M,a_r+a_s\ge a_q+a_s\ge M\),故 \(a_p,a_q\) 之间连的依旧是蓝线,\(a_r,a_s\) 之间连的依旧是红线。
  3. 对于左边第二个的情况,左边的最大值为 \(a_q+a_s\),右边的最大值为 \(\max(a_p+a_s,a_q+a_r)\),而 \(a_p+a_s\le a_q+a_s,a_q+a_r\le a_q+a_s\),故右边答案不会比左边更劣。
  4. 对于右边第二个的情况,左边的最大值为 \(\max(a_p+a_s,a_q+a_r-M)=a_p+a_s\),右边的最大值为 \(\max(a_p+a_q,a_r+a_s-M)\),又由于 \(a_p+a_q\le a_p+a_s,a_r+a_s-M<a_r\le a_p+a_s\),故右边答案不会比左边更劣。
  5. 对于左边第三、四个的情况,证明方法同左边第一、二个,只不过需要整体减个 \(M\)。
  6. 对于右边第三个的情况,左边最大值为 \(\max(a_q+a_r,a_p+a_s-M)=a_q+a_r\),右边最大值为 \(\max(a_p+a_q,a_r+a_s-M)\),又由于 \(a_p+a_q\le a_q+a_r,a_r+a_s-M<a_r\le a_q+a_r\),故右边答案不会比左边更劣。

综上,只要出现线相交或者不同颜色的线出现包含关系的情况,都可以被调整,证毕。

接下来考虑怎样求答案,暴力枚举分割点显然是不可行的,不过注意到对于两个不同且均合法的分割点 \(p\) 和 \(p'\),如果 \(p<p'\),那么以 \(p\) 为分割点的每条线的权值都小于以 \(p'\) 为分割点的每条线的权值,因此我们肯定希望分割点越靠左越好,而如果我们分割点太左了(yyq:政治学得很好嘛),那就会出现右侧有的线不是红线的情况,因此我们可以二分找出合法的且最靠左的分割点 \(p\),然后求出答案即可。

时间复杂度线性对数。

namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
template<typename T> void print(T x,char c){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);putc(c);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
using namespace fastio;
const int MAXN=1e5;
int n,m,a[MAXN*2+5];
int add(int x,int y){return (x+y<m)?(x+y):(x+y-m);}
bool check(int mid){bool flg=1;for(int i=(mid<<1)+1;i<=n<<1;i++) flg&=(a[i]+a[(n<<1)+(mid<<1)+1-i]>=m);return flg;}
int main(){
read(n);read(m);
for(int i=1;i<=n<<1;i++) read(a[i]);
sort(a+1,a+(n<<1)+1);int l=0,r=n,p=-1;
while(l<=r){
int mid=l+r>>1;
if(check(mid)) p=mid,r=mid-1;
else l=mid+1;
} int mx=0;
// printf("%d\n",p);
for(int i=1;i<=p<<1;i++) chkmax(mx,add(a[i],a[(p<<1)+1-i]));
for(int i=(p<<1)+1;i<=n<<1;i++) chkmax(mx,add(a[i],a[(n<<1)+(p<<1)+1-i]));
printf("%d\n",mx);
return 0;
}

Atcoder Grand Contest 032 E - Modulo Pairing(乱搞+二分)的更多相关文章

  1. Atcoder Grand Contest 032

    打的第一场Atcoder,已经知道会被虐得很惨,但没有想到竟然只做出一题-- 思维急需提升. A - Limited Insertion 这题还是很签到的. 感觉正着做不好做,我们反着来,把加数变为删 ...

  2. AtCoder Grand Contest 032 A - Limited Insertion( 思维)

    Time Limit: 2 sec / Memory Limit: 1024 MB Score : 400400 points Problem Statement Snuke has an empty ...

  3. AtCoder Grand Contest 032 B - Balanced Neighbors——构造

    题意 B - Balanced Neighbors 给定一个整数 $N$($3\leq N \leq 100$),构造一个顶点编号为 $1...N$ 的无向图,需满足如下两个条件: 简单图且连通 存在 ...

  4. Atcoder Grand Contest 006 D - Median Pyramid Hard(二分+思维)

    Atcoder 题面传送门 & 洛谷题面传送门 u1s1 Atcoder 不少思维题是真的想不出来,尽管在 Atcoder 上难度并不高 二分答案(这我倒是想到了),检验最上面一层的数是否 \ ...

  5. 【AtCoder Grand Contest 007E】Shik and Travel [Dfs][二分答案]

    Shik and Travel Time Limit: 50 Sec  Memory Limit: 512 MB Description 给定一棵n个点的树,保证一个点出度为2/0. 遍历一遍,要求每 ...

  6. AtCoder Grand Contest 010

    AtCoder Grand Contest 010 A - Addition 翻译 黑板上写了\(n\)个正整数,每次会擦去两个奇偶性相同的数,然后把他们的和写会到黑板上,问最终能否只剩下一个数. 题 ...

  7. AtCoder Grand Contest 012

    AtCoder Grand Contest 012 A - AtCoder Group Contest 翻译 有\(3n\)个人,每一个人有一个强大值(看我的假翻译),每三个人可以分成一组,一组的强大 ...

  8. AtCoder Grand Contest 011

    AtCoder Grand Contest 011 upd:这篇咕了好久,前面几题是三周以前写的... AtCoder Grand Contest 011 A - Airport Bus 翻译 有\( ...

  9. AtCoder Grand Contest 031 简要题解

    AtCoder Grand Contest 031 Atcoder A - Colorful Subsequence description 求\(s\)中本质不同子序列的个数模\(10^9+7\). ...

随机推荐

  1. PHP文件上传漏洞与一句话木马

    靶子代码: 前端效果: 这是个没有任何防护的文件上传代码,同时还热心的附上了上传文件的路径. 我们写好php木马后,什么额外工作也不需要做,直接上传就行了.上传后在浏览器里访问该文件,其就会被执行. ...

  2. Golang通脉之类型定义

    自定义类型 在Go语言中有一些基本的数据类型,如string.整型.浮点型.布尔等数据类型, Go语言中可以使用type关键字来定义自定义类型. type是Go语法里的重要而且常用的关键字,type绝 ...

  3. 一文看懂JVM内存区域分布与作用

    那么我们在开始介绍Java内存区域之前,我们先放一张内存区域的图,方便我们后面介绍的时候可以对照着看. 须知,本文是根据JDK8来介绍的. 程序计数器 首先它是线程私有的,它也称为代码的行号指示器,字 ...

  4. 一张图彻底搞懂Spring循环依赖

    1 什么是循环依赖? 如下图所示: BeanA类依赖了BeanB类,同时BeanB类又依赖了BeanA类.这种依赖关系形成了一个闭环,我们把这种依赖关系就称之为循环依赖.同理,再如下图的情况: 上图中 ...

  5. AVL树的插入和删除

    一.AVL 树 在计算机科学中,AVL树是最早被发明的自平衡二叉查找树.在AVL树中,任一节点对应的两棵子树的最大高度差为 1,因此它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下的时间复杂度 ...

  6. Photoshop cc 绿色版 最新版 下载

    Photoshop cc 绿色版 下载 Photoshop cc 绿色版 最新版下载百度网盘下载 Photoshop 下载提取码: dh6z 作为一个程序员, 不懂点基本的作图都不配"新时代 ...

  7. 创建线程 出现SIGSEGV crash

    在Opwrt平台上测试ok的一个网络传输延时测试demo程序移植到Android平台后,运行出现莫名其妙的SIGSEGV crash. 仔细检查过源码,特别是指针等后未发现问题. --------- ...

  8. vue 插槽slot总结 slot看这篇就够了

    一直模糊所以梳理一下,看了好多篇园友的文章和官网文档在这整理一下 默认插槽 //slot组件<template> <div class="slots"> s ...

  9. MQ限流应用

    业务背景:系统中需要发送邮件给用户!实现是javamail发送 问题:某天,发现有些用户并未收到邮件排查: 1,登录发件箱,发现如下图:大量邮件发送失败,大部分是发送频率过高导致邮箱外发功能被限制 3 ...

  10. Go语言核心36讲(Go语言实战与应用二)--学习笔记

    24 | 测试的基本规则和流程(下) Go 语言是一门很重视程序测试的编程语言,所以在上一篇中,我与你再三强调了程序测试的重要性,同时,也介绍了关于go test命令的基本规则和主要流程的内容.今天我 ...