题意:

      一个人玩纸牌游戏,他每天最多玩n局,枚举获胜的概率是a/b,每天玩牌只要获胜概率达到p,那么他今天就不玩了,明天接着玩,如果有一天他的概率没有达到p,(没有达到p的话他今天一定是玩了n次),那么他以后就在也不玩了,问题是在平均的情况下,他能玩多少个晚上的牌?

思路:

      我们可以先算他只玩一天就失败了的概率,P[i][j]表示玩了i次,赢了j次,当

j/i<=p的时候,根据全概率公式,P[i][j] = P[i-1][j]*(1-p)+P[i-1][j-1]*p前面是输了后面是赢了,端点值是P[0][0] = 1 ,P[0][1] = 0,其他部分全都是0,记得要把其他部分清成0,因为更新是不连续的,这样之后只玩一天的概率等于Q = P[n][0] + P[n][1] +.....

这样答案就是(期望)

玩一天 1 * Q

玩两天 2 * Q(1-Q)

玩三天 3 * Q(1-Q)^2

......

化简后 Ans = 1 / Q;

说下化简的方法吧,有两种

(1)

   a 令s = EX/Q = 1+2(1-Q)+3(1-Q)^2+4(1-Q)^3+...



   b     (1-Q)s = (1-Q)+2(1-Q)^2+3(1-Q)^3+....

a - b得到

EX = Qs = 1+(1-Q)+(1-Q)^2+(1-Q)^3+..=1/Q

(2)

设数学期望为e天,把情况分为两类,第一天晚上出头丧气概率Q期望1,第一天晚上兴高采烈,概率(1-Q)期望e + 1,解得 e = Q * 1 + (1 - Q) * (e + 1) => e = 1/Q;

#include<stdio.h>

#include<string.h>

double P[105][105];

int main ()

{

   int n ,a ,b ,i ,j;

   int t ,cas = 1;

   scanf("%d" ,&t);

   while(t--)

   {

      scanf("%d/%d%d" ,&a ,&b ,&n);

      double p = a * 1.0 / b;

      memset(P ,0 ,sizeof(P));

      P[0][0] = 1 ,P[0][1] = 0;

      for(i = 1 ;i <= n ;i ++)

      for(j = 0 ;j * b <= i * a ;j ++)

      {

         P[i][j] = P[i-1][j] * (1 - p) ;

         if(j >= 1)P[i][j] +=  P[i-1][j-1] * p;

      }

      double Ans = 0;

      for(j = 0 ;j * b <= n * a ;j ++)

      Ans += P[n][j];

      printf("Case #%d: %d\n" ,cas ++ ,(int)(1 / Ans));

   }

   return 0;

}

   

UVA11427玩纸牌(全概率+递推)的更多相关文章

  1. UVA 1541 - To Bet or Not To Bet(概率递推)

    UVA 1541 - To Bet or Not To Bet 题目链接 题意:这题题意真是神了- -.看半天,大概是玩一个游戏,開始在位置0.终点在位置m + 1,每次扔一个硬币,正面走一步,反面走 ...

  2. UVa 557 (概率 递推) Burger

    题意: 有两种汉堡给2n个孩子吃,每个孩子在吃之前要抛硬币决定吃哪一种汉堡.如果只剩一种汉堡,就不用抛硬币了. 求最后两个孩子吃到同一种汉堡的概率. 分析: 可以从反面思考,求最后两个孩子吃到不同汉堡 ...

  3. UVA 557 - Burger(概率 递推)

     Burger  When Mr. and Mrs. Clinton's twin sons Ben and Bill had their tenth birthday, the party was ...

  4. UVA 10288 - Coupons(概率递推)

    UVA 10288 - Coupons option=com_onlinejudge&Itemid=8&page=show_problem&category=482&p ...

  5. UVa 11021 (概率 递推) Tribles

    Tribble是麻球? 因为事件都是互相独立的,所以只考虑一只麻球. 设f(i)表示一只麻球i天后它以及后代全部死亡的概率,根据全概率公式: f(i) = P0 + P1 * f(i-1) + P2 ...

  6. BZOJ.2134.[国家集训队]单选错位(概率 递推)

    题目链接 如题目中的公式,我们只要把做对每个题的概率加起来就可以了(乘个1就是期望). 做对第i道题的概率 \[P_i=\frac{1}{max(a_{i-1},a_i)}\] 原式是 \(P_i=\ ...

  7. UVa 557 Burger (概率+递推)

    题意:有 n 个牛肉堡和 n 个鸡肉堡给 2n 个客人吃,在吃之前抛硬币来决定吃什么,如果剩下的汉堡一样,就不用投了,求最后两个人吃到相同的概率. 析:由于正面考虑还要要不要投硬币,太麻烦,所以我们先 ...

  8. UVA 11021 - Tribles(概率递推)

    UVA 11021 - Tribles 题目链接 题意:k个毛球,每一个毛球死后会产生i个毛球的概率为pi.问m天后,全部毛球都死亡的概率 思路:f[i]为一个毛球第i天死亡的概率.那么 f(i)=p ...

  9. 大概是:整数划分||DP||母函数||递推

    整数划分问题 整数划分是一个经典的问题. Input 每组输入是两个整数n和k.(1 <= n <= 50, 1 <= k <= n) Output 对于每组输入,请输出六行. ...

随机推荐

  1. FreeBSD 开发已经迁移至 git

    FreeBSD 开发已经迁移至 git 全部预计于 2021 年 3 月完成迁移. https://git.freebsd.org/src.git 或者 https://cgit.freebsd.or ...

  2. C# 基础 - 堆栈跟踪使用

    使用一:可用于捕获报错时. using System.Diagnostics; ... StackTrace st = new StackTrace(true); string stackIndent ...

  3. 涂鸦基于OAuth2在开发者平台上的探索与实践

    前言 开发授权(OAuth2)是一个开放标准,允许用户让第三方应用访问该用户在某一网站上存储的私密的资料(如照片.视频.联系人列表),而无需将用户名和密码提供给第三方应用. OAuth2允许用户提供一 ...

  4. FutureTask核心源码分析

    本文主要介绍FutureTask中的核心方法,如果有错误,欢迎大家指出! 首先我们看一下在java中FutureTask的组织关系 我们看一下FutureTask中关键的成员变量以及其构造方法 //表 ...

  5. 运维干货|交换机不同VLAN之间及相同VLAN之内进行隔离

    文中所展示的内容为VLAN与VLAN之间分隔关系,如相同VLAN用户之间进行分隔,相同VLAN一组用户之间允许通信并与其它一组用户之间进行分隔,属于VLAN的高级应用范畴.本文来源于智象运维某大神的日 ...

  6. IT培训有哪些坑(一)?

    IT行业资薪很高,每年都有很多同学冲着高薪去,去各个培训机构学习,期望将来能找个高薪的工作,有个好的出路.我们先不说你选多好,多靠谱的机构,我先来告诉大家有哪些不靠谱,不能选,选了就入坑了的. IT培 ...

  7. 图像Resize方式对深度学习模型效果的影响

    在基于卷积神经网络的应用过程中,图像Resize是必不可少的一个步骤.通常原始图像尺寸比较大,比如常见监控摄像机出来的是1080P高清或者720P准高清画面,而网络模型输入一般没有这么大,像Yolo系 ...

  8. 「HTML+CSS」--自定义加载动画【009】

    前言 Hello!小伙伴! 首先非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出- 哈哈 自我介绍一下 昵称:海轰 标签:程序猿一只|C++选手|学生 简介:因C语言结识编程,随后转入计算机 ...

  9. maven中心仓库OSSRH使用简介

    目录 简介 为什么使用中心仓库 发布到中心仓库前的准备工作 使用OSSRH 使用Sonatype创建ticket 中央仓库中的组件要求 提供Javadoc 和源代码 使用GPG/PGP给文件签名 Me ...

  10. 翻译:《实用的Python编程》08_03_Debugging

    目录 | 上一节 (8.2 日志) | 下一节 (9 包) 8.3 调试 调试建议 假设程序崩溃了: bash % python3 blah.py Traceback (most recent cal ...