Convolutional Neural Network-week2编程题1(Keras tutorial - 笑脸识别)
本次我们将:
- 学习到一个高级的神经网络的框架,能够运行在包括TensorFlow和CNTK的几个较低级别的框架之上的框架。
看看如何在几个小时内建立一个深入的学习算法。 - 为什么我们要使用Keras框架呢?Keras是为了使深度学习工程师能够很快地建立和实验不同的模型的框架,正如TensorFlow是一个比Python更高级的框架,Keras是一个更高层次的框架,并提供了额外的抽象方法。最关键的是Keras能够以最短的时间让想法变为现实。
import numpy as np
from keras import layers
from keras.layers import Input, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D
from keras.layers import AveragePooling2D, MaxPooling2D, Dropout, GlobalMaxPooling2D, GlobalAveragePooling2D
from keras.models import Model
from keras.preprocessing import image
from keras.utils import layer_utils
from keras.utils.data_utils import get_file
from keras.applications.imagenet_utils import preprocess_input
import pydot
from IPython.display import SVG
from keras.utils.vis_utils import model_to_dot
from keras.utils import plot_model
from kt_utils import *
import keras.backend as K
K.set_image_data_format('channels_last')
import matplotlib.pyplot as plt
from matplotlib.pyplot import imshow
%matplotlib inline
注意:正如你所看到的,我们已经从Keras中导入了很多功能, 只需直接调用它们即可轻松使用它们。 比如:X = Input(…)
或者X = ZeroPadding2D(…)
.
1. 任务描述
建立一个算法,它使用来自前门摄像头的图片来检查这个人是否快乐,只有在人高兴的时候,门才会打开。
你收集了你的朋友和你自己的照片,被前门的摄像头拍了下来。数据集已经标记好了
X_train_orig, Y_train_orig, X_test_orig, Y_test_orig, classes = load_dataset()
# Normalize image vectors
X_train = X_train_orig/255.
X_test = X_test_orig/255.
# Reshape
Y_train = Y_train_orig.T
Y_test = Y_test_orig.T
print ("number of training examples = " + str(X_train.shape[0]))
print ("number of test examples = " + str(X_test.shape[0]))
print ("X_train shape: " + str(X_train.shape))
print ("Y_train shape: " + str(Y_train.shape))
print ("X_test shape: " + str(X_test.shape))
print ("Y_test shape: " + str(Y_test.shape))
number of training examples = 600
number of test examples = 150
X_train shape: (600, 64, 64, 3)
Y_train shape: (600, 1)
X_test shape: (150, 64, 64, 3)
Y_test shape: (150, 1)
Details of the "Happy" dataset:
Images are of shape (64,64,3)
Training: 600 pictures
Test: 150 pictures
2. Building a model in Keras
Keras非常适合快速制作模型,它可以在很短的时间内建立一个很优秀的模型.
Here is an example of a model in Keras:
def model(input_shape):
# Define the input placeholder as a tensor with shape input_shape. Think of this as your input image!
X_input = Input(input_shape)
# Zero-Padding: pads the border of X_input with zeroes
X = ZeroPadding2D((3, 3))(X_input)
# CONV -> BN -> RELU Block applied to X
X = Conv2D(32, (7, 7), strides = (1, 1), name = 'conv0')(X)
X = BatchNormalization(axis = 3, name = 'bn0')(X)
X = Activation('relu')(X)
# MAXPOOL
X = MaxPooling2D((2, 2), name='max_pool')(X)
# FLATTEN X (means convert it to a vector) + FULLYCONNECTED
X = Flatten()(X)
X = Dense(1, activation='sigmoid', name='fc')(X)
# Create model. This creates your Keras model instance, you'll use this instance to train/test the model.
model = Model(inputs = X_input, outputs = X, name='HappyModel')
return model
注意:
Keras框架使用的变量名和我们以前使用的numpy和TensorFlow变量不一样。它不是在前向传播的每一步上创建新变量(比如X, Z1, A1, Z2, A2,…)以便于不同层之间的计算。
在Keras中,我们使用X覆盖了所有的值,没有保存每一层结果,我们只需要最新的值,唯一例外的就是
X_input
,我们将它分离出来是因为它是输入的数据,我们要在最后的创建模型那一步中用到。
# GRADED FUNCTION: HappyModel
def HappyModel(input_shape):
"""
Implementation of the HappyModel.
Arguments:
input_shape -- shape of the images of the dataset
Returns:
model -- a Model() instance in Keras
"""
### START CODE HERE ###
# Feel free to use the suggested outline in the text above to get started, and run through the whole
# exercise (including the later portions of this notebook) once. The come back also try out other
# network architectures as well.
X_input = Input(input_shape)
# 使用0填充: X_input周围填充0, p=3
X = ZeroPadding2D((3, 3))(X_input)
# 使用CONV -> Batch归一化 -> Relu
X = Conv2D(32, (3, 3), strides = (1, 1), name = 'conv0')(X)
X = BatchNormalization(axis=3, name='bn0')(X)
X = Activation('relu')(X)
# MaxPool: 最大值池化层
X = MaxPooling2D((2, 2), name='max_pool')(X)
X = Conv2D(16, (3, 3), strides = (1, 1), name = 'conv1')(X) # 优化后
X = Activation('relu')(X)
X = MaxPooling2D((2, 2), name='max_pool1')(X)
# Flatten层, 矩阵-->向量
# 全连接层(full Connected)
X = Flatten()(X)
X = Dense(1, activation='sigmoid', name='fc')(X)
model = Model(inputs = X_input, outputs = X, name='HappyModel')
### END CODE HERE ###
return model
设计好模型,训练并测试模型需要:
创建一个模型实体。
编译模型,可以使用这个语句:
model.compile(optimizer = "...", loss = "...", metrics = ["accuracy"])
。训练模型:
model.fit(x = ..., y = ..., epochs = ..., batch_size = ...)
。评估模型:
model.evaluate(x = ..., y = ...)
。
# step 1. create the model.
happyModel = HappyModel(X_train.shape[1:])
# step 2. compile the model to configure the learning process. accuracy是评价指标
happyModel.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# step 3. 训练模型
happyModel.fit(x = X_train, y = Y_train, epochs = 40, batch_size = 50)
# step 4. 评价模型, 在测试集上评价
preds = happyModel.evaluate(x = X_test, y = Y_test)
print()
print ("Loss = " + str(preds[0]))
print ("Test Accuracy = " + str(preds[1]))
Epoch 1/40
600/600 [==============================] - 20s - loss: 0.7217 - acc: 0.6300
Epoch 2/40
600/600 [==============================] - 21s - loss: 0.4625 - acc: 0.8083
Epoch 3/40
600/600 [==============================] - 19s - loss: 0.3341 - acc: 0.8667
Epoch 4/40
600/600 [==============================] - 24s - loss: 0.2439 - acc: 0.9167
Epoch 5/40
600/600 [==============================] - 22s - loss: 0.1956 - acc: 0.9367
Epoch 6/40
600/600 [==============================] - 21s - loss: 0.1750 - acc: 0.9350
Epoch 7/40
600/600 [==============================] - 20s - loss: 0.1411 - acc: 0.9600
Epoch 8/40
600/600 [==============================] - 29s - loss: 0.1271 - acc: 0.9583
Epoch 9/40
600/600 [==============================] - 33s - loss: 0.1177 - acc: 0.9667
Epoch 10/40
600/600 [==============================] - 29s - loss: 0.0918 - acc: 0.9767
Epoch 11/40
600/600 [==============================] - 30s - loss: 0.0772 - acc: 0.9833
Epoch 12/40
600/600 [==============================] - 23s - loss: 0.0734 - acc: 0.9817
Epoch 13/40
600/600 [==============================] - 20s - loss: 0.0716 - acc: 0.9867
Epoch 14/40
600/600 [==============================] - 20s - loss: 0.0724 - acc: 0.9800
Epoch 15/40
600/600 [==============================] - 19s - loss: 0.0598 - acc: 0.9867
Epoch 16/40
600/600 [==============================] - 20s - loss: 0.0667 - acc: 0.9833
Epoch 17/40
600/600 [==============================] - 19s - loss: 0.0566 - acc: 0.9850
Epoch 18/40
600/600 [==============================] - 22s - loss: 0.0449 - acc: 0.9917
Epoch 19/40
600/600 [==============================] - 21s - loss: 0.0475 - acc: 0.9917
Epoch 20/40
600/600 [==============================] - 21s - loss: 0.0533 - acc: 0.9850
Epoch 21/40
600/600 [==============================] - 21s - loss: 0.0468 - acc: 0.9883
Epoch 22/40
600/600 [==============================] - 20s - loss: 0.0391 - acc: 0.9933
Epoch 23/40
600/600 [==============================] - 19s - loss: 0.0367 - acc: 0.9917
Epoch 24/40
600/600 [==============================] - 20s - loss: 0.0339 - acc: 0.9900
Epoch 25/40
600/600 [==============================] - 21s - loss: 0.0436 - acc: 0.9883
Epoch 26/40
600/600 [==============================] - 20s - loss: 0.0314 - acc: 0.9900
Epoch 27/40
600/600 [==============================] - 21s - loss: 0.0295 - acc: 0.9900
Epoch 28/40
600/600 [==============================] - 21s - loss: 0.0295 - acc: 0.9933
Epoch 29/40
600/600 [==============================] - 20s - loss: 0.0261 - acc: 0.9917
Epoch 30/40
600/600 [==============================] - 21s - loss: 0.0286 - acc: 0.9933
Epoch 31/40
600/600 [==============================] - 22s - loss: 0.0237 - acc: 0.9933
Epoch 32/40
600/600 [==============================] - 23s - loss: 0.0192 - acc: 0.9983
Epoch 33/40
600/600 [==============================] - 22s - loss: 0.0218 - acc: 0.9967
Epoch 34/40
600/600 [==============================] - 21s - loss: 0.0272 - acc: 0.9950
Epoch 35/40
600/600 [==============================] - 19s - loss: 0.0188 - acc: 0.9983
Epoch 36/40
600/600 [==============================] - 19s - loss: 0.0166 - acc: 0.9933
Epoch 37/40
600/600 [==============================] - 19s - loss: 0.0193 - acc: 0.9983
Epoch 38/40
600/600 [==============================] - 19s - loss: 0.0134 - acc: 0.9967
Epoch 39/40
600/600 [==============================] - 20s - loss: 0.0147 - acc: 0.9983
Epoch 40/40
600/600 [==============================] - 19s - loss: 0.0174 - acc: 0.9983
<keras.callbacks.History at 0x1cc49470>
150/150 [==============================] - 1s
Loss = 0.10337299724419911
Test Accuracy = 0.9733333309491475
准确度大于80%就算正常,如果你的准确度没有大于80%,你可以尝试改变模型:
X = Conv2D(32, (3, 3), strides = (1, 1), name = 'conv0')(X)
X = BatchNormalization(axis = 3, name = 'bn0')(X)
X = Activation('relu')(X)
直到 height and width dimensions 十分小, channels数 十分大(≈32 for example)
- 你可以在每个块后面使用最大值池化层,它将会减少宽、高的维度。
- Change your optimizer. 这里使用的是Adam
- 如果模型难以运行,并且遇到了内存不够的问题,那么就降低batch_size (12通常是一个很好的折中方案)
- Run on more epochs, until you see the train accuracy plateauing.
Note: If you perform hyperparameter tuning on your model, the test set actually becomes a dev set, and your model might end up overfitting to the test (dev) set. But just for the purpose of this assignment, we won't worry about that here.
3. 总结
模型构建过程,Create -> Compile -> Fit/Train -> Evaluate/Test.
4. 测试你的图片
### START CODE HERE ###
img_path = 'images/smail01.png'
### END CODE HERE ###
img = image.load_img(img_path, target_size=(64, 64))
imshow(img)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print(happyModel.predict(x))
[[1.]]
### START CODE HERE ###
img_path = 'images/smail08.png'
### END CODE HERE ###
img = image.load_img(img_path, target_size=(64, 64))
imshow(img)
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
print(happyModel.predict(x))
[[0.]]
5. 其他一些有用的功能
model.summary()
:打印出你的每一层的大小细节plot_model()
: 绘制出布局图
happyModel.summary()
______________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_3 (InputLayer) (None, 64, 64, 3) 0
_________________________________________________________________
zero_padding2d_3 (ZeroPaddin (None, 70, 70, 3) 0
_________________________________________________________________
conv0 (Conv2D) (None, 68, 68, 32) 896
_________________________________________________________________
bn0 (BatchNormalization) (None, 68, 68, 32) 128
_________________________________________________________________
activation_3 (Activation) (None, 68, 68, 32) 0
_________________________________________________________________
max_pool (MaxPooling2D) (None, 34, 34, 32) 0
_________________________________________________________________
flatten_3 (Flatten) (None, 36992) 0
_________________________________________________________________
fc (Dense) (None, 1) 36993
=================================================================
Total params: 38,017
Trainable params: 37,953
Non-trainable params: 64
_________________________________________________________________
执行下面:
需要安装:Graphviz, 参考这个https://www.cnblogs.com/shuodehaoa/p/8667045.html
执行:pip install pydot-ng & pip install graphviz
plot_model(happyModel, to_file='HappyModel.png')
SVG(model_to_dot(happyModel).create(prog='dot', format='svg'))
Convolutional Neural Network-week2编程题1(Keras tutorial - 笑脸识别)的更多相关文章
- 《ABCNN: Attention-Based Convolutional Neural Network for Modeling Sentence Pairs》
代码: keras:https://github.com/phdowling/abcnn-keras tf:https://github.com/galsang/ABCNN 本文是Wenpeng Yi ...
- ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...
- ISSCC 2017论文导读 Session 14 Deep Learning Processors,A 2.9TOPS/W Deep Convolutional Neural Network SOC
最近ISSCC2017大会刚刚举行,看了关于Deep Learning处理器的Session 14,有一些不错的东西,在这里记录一下. A 2.9TOPS/W Deep Convolutional N ...
- 论文阅读(Weilin Huang——【TIP2016】Text-Attentional Convolutional Neural Network for Scene Text Detection)
Weilin Huang--[TIP2015]Text-Attentional Convolutional Neural Network for Scene Text Detection) 目录 作者 ...
- 卷积神经网络(Convolutional Neural Network,CNN)
全连接神经网络(Fully connected neural network)处理图像最大的问题在于全连接层的参数太多.参数增多除了导致计算速度减慢,还很容易导致过拟合问题.所以需要一个更合理的神经网 ...
- Convolutional Neural Network in TensorFlow
翻译自Build a Convolutional Neural Network using Estimators TensorFlow的layer模块提供了一个轻松构建神经网络的高端API,它提供了创 ...
- 卷积神经网络(Convolutional Neural Network, CNN)简析
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID ...
- HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK阅读笔记
HYPERSPECTRAL IMAGE CLASSIFICATION USING TWOCHANNEL DEEP CONVOLUTIONAL NEURAL NETWORK 论文地址:https:/ ...
- A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK文章笔记
A NEW HYPERSPECTRAL BAND SELECTION APPROACH BASED ON CONVOLUTIONAL NEURAL NETWORK 文章地址:https://ieeex ...
随机推荐
- 第九章 Net 5.0 快速开发框架 YC.Boilerplate --定时服务 Quartz.net
在线文档:http://doc.yc-l.com/#/README 在线演示地址:http://yc.yc-l.com/#/login 源码github:https://github.com/linb ...
- 20210826 Lighthouse,Miner,Lyk Love painting,Revive
考场 T1 这不裸的容斥 T2 这不裸的欧拉路,先从奇数度点开始走,走不了就传送 T3 什么玩意,暴力都不会 T4 点分树??? 仔细想了一波,发现 T1 T2 都好做,T3 二分答案后可以暴力贪心, ...
- Python - repr()、str() 的区别
总的来说 str():将传入的值转换为适合人阅读的字符串形式 repr():将传入的值转换为 Python 解释器可读取的字符串形式 传入整型 # number resp = str(1) print ...
- 快速模式第三包:quick_inR1_outI2()
快速模式第三包:quick_inR1_outI2() 文章目录 快速模式第三包:quick_inR1_outI2() 1. 序言 2. quick_inR1_outI2()的处理流程 3. 快速模式第 ...
- Tensorflow保存神经网络参数有妙招:Saver和Restore
摘要:这篇文章将讲解TensorFlow如何保存变量和神经网络参数,通过Saver保存神经网络,再通过Restore调用训练好的神经网络. 本文分享自华为云社区<[Python人工智能] 十一. ...
- 将给定数据源生成静态HTML页面持久化到项目之外的硬盘
一.java代码 设置好数据源map Map<String,String> map=new HashMap<>(); map.put("knowledgeName&q ...
- linux下制作img文件
一.简介 制作img文件可以使用linux系统中的dd命令制作,Linux dd 命令用于读取.转换并输出数据.dd 可从标准输入或文件中读取数据,根据指定的格式来转换数据,再输出到文件.设备或标准输 ...
- 5.10学习总结——Activity的跳转和传值
使用sharedpreference是对信息的存储,也可以进行传值,今天通过查找资料,学习了Activity的跳转和传值方法. 跳转 1.显示跳转 4种方法 1 2 3 4 5 6 7 8 9 10 ...
- Fillder抓包配置
Faillder设置,完成以下设置后重启Fillder Fillder工具配置 设置端口 端口设置 (根据公司限制使用范围内的端口) 设置是否远程连接 勾选Decrypt HTTPS traffic ...
- django 内置用户-装饰器
""" 一.如何给python内置用户添加额外的字段,注意一定义在没有迁移数据之前定义,否则会报错 1.在models中先调用 from django.contrib.a ...