[bzoj5510]唱跳rap和篮球
显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况……
考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于在剩下n-4t的位置上摆上4种东西,且每种东西有数量限制(ai-t个)。
这个东西dp一下即可,用f[i][j]表示选了前i中东西,用了j个位置的方案数,则有转移$f[i][j]=\sum\limits_{ai-t\geq j-k\geq 0,j\geq 0}f[i-1][k]\cdot c(n-4t-k,n-4t-j)$,这样的时间复杂度是$o(n^{3})$(然后卡卡常就过去了,仅20s),无法通过。
显然发现可以用fft优化,具体操作将c(i,j)以j为第一维预处理,则第一维就不与k有关了,而第二位与fft的形式很像,只要注意删掉不合法的f状态(置为0)即可,总时间复杂度为$o(n^{2}log_{n})$
1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,ans,a[11],c[1001][1001],f[11][1001];
5 int main(){
6 scanf("%d",&n);
7 for(int i=0;i<4;i++)scanf("%d",&a[i]);
8 for(int i=0;i<=n;i++)c[i][i]=c[i][0]=1;
9 for(int i=2;i<=n;i++)
10 for(int j=1;j<i;j++)c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
11 for(int i=0;i<=n/4;i++){
12 memset(f,0,sizeof(f));
13 for(int j=0;j<=a[0]-i;j++)f[0][j]=c[n-4*i][j];
14 for(int j=1;j<4;j++)
15 for(int k=0;k<=n-4*i;k++)
16 for(int l=max(0,k-a[j]+i);l<=k;l++)
17 f[j][k]=(f[j][k]+1LL*f[j-1][l]*c[n-4*i-l][n-4*i-k])%mod;
18 ans=(ans+1LL*(1-i%2*2+mod)*f[3][n-4*i]%mod*c[n-3*i][i])%mod;
19 }
20 printf("%d",ans);
21 }
[bzoj5510]唱跳rap和篮球的更多相关文章
- 将Android手机无线连接到Ubuntu实现唱跳Rap
您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...
- [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt
[TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...
- [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥
题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...
- [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)
[luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...
- 「TJOI2019」唱、跳、rap 和篮球 题解
题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...
- [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)
算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...
- 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球
原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...
- [TJOI2019]唱、跳、rap和篮球
嘟嘟嘟 TJ律师函警告 20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可. 需要注意的是,容斥的时候还要 ...
- Luogu5339 [TJOI2019]唱、跳、rap和篮球 【生成函数,NTT】
当时看到这道题的时候我的脑子可能是这样的: My left brain has nothing right, and my right brain has nothing left. 总之,看到&qu ...
随机推荐
- 题解 [HAOI2018]反色游戏
题目传送门 题目大意 给出一个 \(n\) 个点 \(m\) 条无向边的图,每个点都有一个 \(\in [0,1]\) 的权值,每次可以选择一条边,然后将该边相连两点权值异或上 \(1\).问有多少种 ...
- bzoj1341 名次排序问题rank sorting(dp,考虑到对未来的贡献)
QWQ啊 这个题可以说是我目前碰到过的最难理解的dp之一了. 题目大意: 已知参赛选手的得分,你的任务是按照得分从高到底给出选手的排名.遗憾的是,保存选手信息的数据结构只支持 一种操作,即将一个选手从 ...
- [源码解析]PyTorch如何实现前向传播(1) --- 基础类(上)
[源码解析]PyTorch如何实现前向传播(1) --- 基础类(上) 目录 [源码解析]PyTorch如何实现前向传播(1) --- 基础类(上) 0x00 摘要 0x01 总体逻辑 0x02 废弃 ...
- css单位px,em,rem区别
在css中单位长度用的最多的是px.em.rem,这三个的区别是: px是固定的像素,一旦设置了就无法因为适应页面大小而改变. em和rem相对于px更具有灵活性,他们是相对长度单位,意思是长度不是定 ...
- 半天撸一个简易版mybatis
为什么需要持久层框架? 首先我们先看看使用原生jdbc存在的问题? public static void main(String[] args) { Connection connection = n ...
- 【UE4 C++ 基础知识】<8> Delegate 委托
概念 定义 UE4中的delegate(委托)常用于解耦不同对象之间的关联:委托的触发者不与监听者有直接关联,两者通过委托对象间接地建立联系. 监听者通过将响应函数绑定到委托上,使得委托触发时立即收到 ...
- 【数据结构与算法Python版学习笔记】树——二叉树的应用:解析树
解析树(语法树) 将树用于表示语言中句子, 可以分析句子的各种语法成分, 对句子的各种成分进行处理 语法分析树 程序设计语言的编译 词法.语法检查 从语法树生成目标代码 自然语言处理 机器翻译 语义理 ...
- AIApe问答机器人Scrum Meeting 5.1
Scrum Meeting 5 日期:2021年5月1日 会议主要内容概述:汇报两日工作. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明昕 后端 Task ...
- 用建造者模式实现一个防SQL注入的ORM框架
本文节选自<设计模式就该这样学> 1 建造者模式的链式写法 以构建一门课程为例,一个完整的课程由PPT课件.回放视频.课堂笔记.课后作业组成,但是这些内容的设置顺序可以随意调整,我们用建造 ...
- STM32单片机的学习方法(方法大体适用所有开发版入门)
1,一款实用的开发板. 这个是实验的基础,有时候软件仿真通过了,在板上并不一定能跑起来,而且有个开发板在手,什么东西都可以直观的看到,效果不是仿真能比的.但开发板不宜多,多了的话连自己都不知道该学哪个 ...