显然答案可以理解为有(不是仅有)0对情况-1对情况+2对情况……

考虑这个怎么计算,先计算这t对情况的位置,有c(n-3t,t)种情况(可以理解为将这4个点缩为1个,然后再从中选t个位置),然后相当于在剩下n-4t的位置上摆上4种东西,且每种东西有数量限制(ai-t个)。

这个东西dp一下即可,用f[i][j]表示选了前i中东西,用了j个位置的方案数,则有转移$f[i][j]=\sum\limits_{ai-t\geq j-k\geq 0,j\geq 0}f[i-1][k]\cdot c(n-4t-k,n-4t-j)$,这样的时间复杂度是$o(n^{3})$(然后卡卡常就过去了,仅20s),无法通过。

显然发现可以用fft优化,具体操作将c(i,j)以j为第一维预处理,则第一维就不与k有关了,而第二位与fft的形式很像,只要注意删掉不合法的f状态(置为0)即可,总时间复杂度为$o(n^{2}log_{n})$

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define mod 998244353
4 int n,ans,a[11],c[1001][1001],f[11][1001];
5 int main(){
6 scanf("%d",&n);
7 for(int i=0;i<4;i++)scanf("%d",&a[i]);
8 for(int i=0;i<=n;i++)c[i][i]=c[i][0]=1;
9 for(int i=2;i<=n;i++)
10 for(int j=1;j<i;j++)c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
11 for(int i=0;i<=n/4;i++){
12 memset(f,0,sizeof(f));
13 for(int j=0;j<=a[0]-i;j++)f[0][j]=c[n-4*i][j];
14 for(int j=1;j<4;j++)
15 for(int k=0;k<=n-4*i;k++)
16 for(int l=max(0,k-a[j]+i);l<=k;l++)
17 f[j][k]=(f[j][k]+1LL*f[j-1][l]*c[n-4*i-l][n-4*i-k])%mod;
18 ans=(ans+1LL*(1-i%2*2+mod)*f[3][n-4*i]%mod*c[n-3*i][i])%mod;
19 }
20 printf("%d",ans);
21 }

[bzoj5510]唱跳rap和篮球的更多相关文章

  1. 将Android手机无线连接到Ubuntu实现唱跳Rap

    您想要将Android设备连接到Ubuntu以传输文件.查看Android通知.以及从Ubuntu桌面发送短信 – 你会怎么做?将文件从手机传输到PC时不要打电话给自己:使用GSConnect就可以. ...

  2. [TJOI2019]唱、跳、rap和篮球_生成函数_容斥原理_ntt

    [TJOI2019]唱.跳.rap和篮球 这么多人过没人写题解啊 那我就随便说说了嗷 这题第一步挺套路的,就是题目要求不能存在balabala的时候考虑正难则反,要求必须存在的方案数然后用总数减,往往 ...

  3. [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

    题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...

  4. [luogu5339] [TJOI2019]唱、跳、rap和篮球(容斥原理+组合数学)(不用NTT)

    [luogu5339] [TJOI2019]唱.跳.rap和篮球(容斥原理+组合数学)(不用NTT) 题面 略 分析 首先考虑容斥,求出有i堆人讨论的方案. 可以用捆绑法,把每堆4个人捆绑成一组,其他 ...

  5. 「TJOI2019」唱、跳、rap 和篮球 题解

    题意就不用讲了吧-- 鸡你太美!!! 题意: 有 \(4\) 种喜好不同的人,分别最爱唱.跳. \(rap\).篮球,他们个数分别为 \(A,B,C,D\) ,现从他们中挑选出 \(n\) 个人并进行 ...

  6. [TJOI2019]唱,跳,rap,篮球(生成函数,组合数学,NTT)

    算是补了个万年大坑了吧. 根据 wwj 的题解(最准确),设一个方案 \(S\)(不一定合法)的鸡你太美组数为 \(w(S)\). 答案就是 \(\sum\limits_{S}[w(S)=0]\). ...

  7. 【题解】Luogu P5339 [TJOI2019]唱、跳、rap和篮球

    原题传送门 这题zsy写的是\(O(n^2)\),还有NTT\(O(n^2\log n)\)的做法.我的是暴力,\(O(\frac{a b n}{4})\),足够通过 考虑设\(f(i)\)表示序列中 ...

  8. [TJOI2019]唱、跳、rap和篮球

    嘟嘟嘟 TJ律师函警告 20分暴力比较好拿,因为每一种学生可以理解为无限多,那么总方案数就是\(C_{n} ^ {4}\),然后我们枚举至少讨论cxk的有几组,容斥即可. 需要注意的是,容斥的时候还要 ...

  9. Luogu5339 [TJOI2019]唱、跳、rap和篮球 【生成函数,NTT】

    当时看到这道题的时候我的脑子可能是这样的: My left brain has nothing right, and my right brain has nothing left. 总之,看到&qu ...

随机推荐

  1. 感恩笔记之二_SQL语句扩展功能

    前言导读: 本章是对SQL语句基础功能中,一些功能用法的扩展使用的总结,都是实际工作中一些经验的积累. 1 select列查询功能组合使用 --1 函数处理+列计算+列改名 select 函数(列) ...

  2. 题解 「CTSC2018暴力写挂」

    题目传送门 题目大意 给出两个大小为 \(n\) 的树,求出: \[\max\{\text{depth}(x)+\text{depth}(y)-\text{depth}(\text{LCA}(x,y) ...

  3. 小白自制Linux开发板 四. 通过SPI使用ESP8266做无线网卡

    本文章基于 WhyCan Forum(哇酷开发者社区) https://whycan.com/t_4149.htmlhttps://whycan.com/t_5870.html整理而成. 为了尊重原作 ...

  4. redis分片集群安装部署

    redis分片集群安装与部署 分片集群的优势 高可用.且方便扩展. 数据分片,多节点提供服务,提高性能,数据提供冗余备份. 分片集群部署 只需更改配置文件 部署架构:6个节点,3主3从.数据集分为3片 ...

  5. 小白自制Linux开发板 五. Debian文件系统制作,以及WIFI配置、交换分区配置

    该片文章将完整记录一个Debian的最小文件系统的生成,以及自定义配置WIFI组件.网络组件和交换分区配置 本文章参考:https://whycan.com/t_4236.htmlhttp://www ...

  6. Java(21)内部类

    作者:季沐测试笔记 原文地址:https://www.cnblogs.com/testero/p/15228411.html 博客主页:https://www.cnblogs.com/testero ...

  7. 浏览器有别_HTTP报文的回车换行

    本来以为浏览器HTTP报文的生成应该是完全一致的.但最近在做一个项目的时候,发现Safari和Chrome提交同一份表单,后端的处理结果不一致.看提交结果呢,是因为Safari多了个回车.由于原项目的 ...

  8. CentOS 用户与群组

    目录 1.用户管理 1.1.切换用户 1.2.添加用户 1.3.删除用户 1.4.修改用户 2.群组管理 2.1.查看群组 2.2.添加群组 2.3.删除群组 2.4.修改群组 1.用户管理 Linu ...

  9. 【UE4 C++ 基础知识】<5> 容器——TArray

    概述 TArray 是UE4中最常用的容器类.其速度快.内存消耗小.安全性高. 其设计时未考虑扩展问题,因此建议在实际操作中勿使用 新建(new) 和 删除(delete) 创建或销毁 TArray ...

  10. Java:创建对象小记

    Java:创建对象小记 对 Java 中的创建对象的内容,做一个微不足道的小小小小记 创建对象的方式概述 使用 new 关键字:Person person = new Person(); 反射创建:使 ...