[省选联考 2021 A 卷] 矩阵游戏
很巧妙的一个构造。
我是没有想到的。
自己的思维能力可能还是不足。
考虑先满足\(b\)对\(a\)的限制,把\(a\)的第一行和第一列设\(0\),推出这个\(a\)。
接下来考虑对这个\(a\),矩阵进行一些行列加的操作满足\(\leq 1e6\)的性质。
考虑操作做时,奇偶分开加减这样的操作保证\(b\)的限制。
借用一下其他大佬的图。
如下代码因为被卡常了,所以在跑\(BellmanFord\)时没有跑完,所以其实并不保证正确性。只是能过数据而已,好无奈。
[省选联考 2021 A 卷] 矩阵游戏
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
ll N;
int n,m;
int a[4000][4000],b[4000][4000],cnt,head[100000];
ll dis[100000];
struct P{int s,to,next,v;}e[400000];
inline void clear(){cnt = 0;std::memset(head,0,sizeof(head));std::memset(dis,0x3f,sizeof(dis));}
inline void add(ll x,ll y,ll v){
// std::cout<<x<<" "<<y<<" "<<v<<std::endl;
e[++cnt].s = x;
e[cnt].to = y;
e[cnt].next = head[x];
e[cnt].v = v;
head[x] = cnt;
}
inline int read(){
int ans = 0;
char a = getchar();
while(a < '0' || a > '9')a = getchar();
while(a <= '9' && a >= '0')
ans = (ans << 3) + (ans << 1) + (a - '0'),a = getchar();
return ans;
}
inline void init(){
n = read(),m = read();
for(int i = 1;i <= n - 1;++i)
for(int j = 1;j <= m - 1;++j)
b[i][j] = read();
}
inline void st(){
for(int i = n;i >= 1;--i)
for(int j = m;j >= 1;--j)
a[i][j] = b[i][j] - a[i + 1][j] - a[i + 1][j + 1] - a[i][j + 1];
}
inline bool r(){
dis[1] = 0;
for(int i = 1;i <= n;++i){
for(int j = 1;j <= cnt;++j){
int s = e[j].s;
int t = e[j].to;
if(dis[t] > dis[s] + e[j].v)
dis[t] = dis[s] + e[j].v;
// std::cout<<s<<" "<<t<<" "<<dis[t]<<" "<<dis[s]<<" "<<e[j].v<<std::endl;
}
}
// for(int i = 1;i <= m + n;++i)
// std::cout<<dis[i]<<" ";
for(int j = 1;j <= cnt;++j){
int s = e[j].s;
int t = e[j].to;
if(dis[t] > dis[s] + e[j].v){
return false;
}
}
return true;
}
inline void putout(){
// for(int i = 1;i <= m + n;++i)
// std::cout<<dis[i]<<" ";
puts("YES");
// for(int i = 1;i <= n;++i,puts(""))
// for(int j = 1;j <= m;++j)
// std::cout<<a[i][j]<<" ";
for(int i = 1;i <= n;++i,puts(""))
for(int j = 1;j <= m;++j){
if(!((i + j) & 1))
a[i][j] = a[i][j] + dis[i] - dis[n + j];
else
a[i][j] = a[i][j] + dis[j + n] - dis[i];
std::cout<<a[i][j]<<" ";
}
}
inline void got(){
clear();
for(int i = 1;i <= n;++i){
for(int j = 1;j <= m;++j){
if(!((i + j) & 1))
add(i,j + n,a[i][j]),add(j + n,i,1000000 - a[i][j]);
else
add(j + n,i,a[i][j]),add(i,j + n,1000000 - a[i][j]);
}
}
// for(int i = 1;i <= m + n;++i)
// add(0,i,0);
if(!r())
puts("NO");
else
putout();
}
int main(){
scanf("%d",&N);
while(N -- ){
init();
st();
got();
}
}
[省选联考 2021 A 卷] 矩阵游戏的更多相关文章
- 洛谷 P7515 - [省选联考 2021 A 卷] 矩阵游戏(差分约束)
题面传送门 emmm--怎么评价这个题呢,赛后学完差分约束之后看题解感觉没那么 dl,可是现场为啥就因为种种原因想不到呢?显然是 wtcl( 先不考虑"非负"及" \(\ ...
- 洛谷 P7520 - [省选联考 2021 A 卷] 支配(支配树)
洛谷题面传送门 真·支配树不 sb 的题. 首先题面已经疯狂暗示咱们建出支配树对吧,那咱就老老实实建呗.由于这题数据范围允许 \(n^2\) 算法通过,因此可以考虑 \(\mathcal O(n^2 ...
- [省选联考 2021 A/B 卷] 卡牌游戏
垃圾福建垫底选手来看看这题. 大家怎么都写带 \(log\) 的. 我来说一个线性做法好了. 那么我们考虑枚举 \(k\) 作为翻转完的最小值. 那么构造出一个满足条件的操作,我们在 \(a_i\) ...
- luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)
luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...
- [省选联考 2020 A 卷] 组合数问题
题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...
- luoguP6623 [省选联考 2020 A 卷] 树(trie树)
luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...
- luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)
luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...
- 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)
题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...
- 洛谷 P7516 - [省选联考 2021 A/B 卷] 图函数(Floyd)
洛谷题面传送门 一道需要发现一些简单的性质的中档题(不过可能这道题放在省选 D1T3 中偏简单了?) u1s1 现在已经是 \(1\text{s}\) \(10^9\) 的时代了吗?落伍了落伍了/ ...
随机推荐
- 4.7 80--删除排序数组中的重复项 II
因为python的list可以直接del List[index],因此直接使用了暴力方法,判断是否重复了两次,是的话直接使用del. 在转向使用Java时,因为暴力方法的局限,一直在找怎样对Java的 ...
- [软工顶级理解组] Alpha阶段团队贡献分评分
评分总表 下述表格适用于前端.后端.爬虫开发者的评分,基础分数为50分,在此基础上进行增减. 类别 程度 加减分 准时性 提前完成 +0 按时完成 +0 延后完成,迟交时间一天内或未延误进度 -2 延 ...
- 2021.8.24考试总结[NOIP47]
T1 prime 发现只需筛小于等于$mid(\sqrt r,k)$的质数,之后用这些质数筛掉区间内不合法的数即可. $code:$ 1 #include<bits/stdc++.h> 2 ...
- 零基础学习STM32之入门学习路线
可以说就目前的市场需求来看,stm32在单片机领域已经拥有了绝对的地位,51什么的已经过时了也只能拿来打基础了,最后依然会转到stm32来,也正是因为这样stm32的学习者越来越多,其中不难发现绝大部 ...
- 如何系统学习C 语言(上)之 基础篇
大话C 语言(一) 初识C 语言 老实说,上大学之前我根本不知道什么是C 语言,所以当初学校开设这门课时,我是充满了好奇,所以当初我翻阅了大量的C 语言入门书籍,千篇一律,都是从一些概念.术语和理论讲 ...
- python re:正向肯定预查(?=)和反向肯定预查(?<=)
参考资料:https://tool.oschina.net/uploads/apidocs/jquery/regexp.html (?=pattern) 正向肯定预查,在任何匹配pattern的字符串 ...
- P2774 方格取数问题(最小割)
P2774 方格取数问题 一看题目便知是网络流,但由于无法建图.... 题目直说禁止那些条件,这导致我们直接建图做不到,既然如此,我们这是就要逆向思维,他禁止那些边,我们就连那些边. 我们将棋盘染色, ...
- 跟着老猫来搞GO,集跬步而致千里
上次博客中,老猫已经和大家同步了如何搭建相关的GO语言的开发环境,相信在车上的小伙伴应该都已经搞定了环境了.那么本篇开始,我们就来熟悉GO语言的基础语法.本篇搞定之后,其实期待大家可以和老猫一样,能够 ...
- IP数据报中如果不分片,分片标志值是什么?
过了好久才解决这个简单的问题,罪过罪过- 答案:如果IP数据报不分片,分片标志DF(Don't Fragment)会被设置为1.分片标志MF(More Fragment)设置为0. 下面是详细解释: ...
- vue脚手架项目如何在控制台打印组件实例
需要在浏览器上安装拓展程序vue开发工具,安装好后在控制台上输入$vm即可打印vue组件实例对象. Vue2.3开发工具都有,可自行下载 百度网盘链接提取码:si5l