令$e_{G}(a)$和$o_{G}(a)$分别表示在图$G$中从1到$a$的长度为奇数/偶数的最短路(若该类最短路不存在则为$\infty$),不难得到有以下结论——$f_{G}(a,b)=\begin{cases}[b\ge e_{G}(a)]&(b\equiv 0(mod\ 2))\\ [b\ge o_{G}(a)]&(b\equiv 1(mod\ 2))\end{cases}$

根据这个结论,即要求$\forall a,e_{G}(a)=e_{G'}(a)$且$o_{G}(a)=o_{G'}(a)$

先对原图$G$求出所有$e_{G}(a)$和$o_{G}(a)$,将$a$拆为$a_{0}$和$a_{1}$,并对边$(a,b)$连$(a_{0},b_{1})$和$(a_{1},b_{0})$,最后从$1_{0}$出发bfs即可,时间复杂度为$o(n)$

记$G'$的边集为$E$,那么$\forall a,e_{G}(a)=e_{G'}(a)$且$o_{G}(a)=o_{G'}(a)$当且仅当满足以下两个条件:

1.$(a,b)\in E,|e_{G}(a)-o_{G}(b)|=1$且$|e_{G}(b)-o_{G}(a)|=1$(特别的,定义$|\infty-\infty|=1$)

2.$\forall e_{G}(a)\ne 0,\infty,\exists (a,b)\in E,e_{G}(a)=o_{G}(b)+1$且$\forall o_{G}(a)\ne \infty,\exists (a,b)\in E,o_{G}(a)=e_{G}(b)+1$

(关于这个结论,必要性显然,充分性拆点后对距离从小到大归纳即可)

若存在$a$满足$e_{G}(a)=\infty$,那么根据第1个条件,与其相连的点$o_{G}(b)=\infty$,以此类推,所有点(原图连通)$b$都满足$e_{G}(b)=\infty$或$o_{G}(b)=\infty$($o_{G}(a)=\infty$同理)

此时,对于第2个条件,除1以外(1没有限制)每一个点仅有1维有限制,只需要连向一个可以使其该维满足第2个条件的点,显然这样的点必然存在,最终的边数即为$n-1$

(也即原图没有奇环,不能调整奇偶性,构造方案即取以1为根的最短路径树)

考虑这种情况后,即$\forall a,e_{G}(a),o_{G}(a)\ne \infty$,将其作为点$(\min(e_{G}(a),o_{G}(a)),\max(e_{G}(a),o_{G}(a)))$,并将所有点$(x,y)$按照$x+y$从小到大排序、$x+y$相同时$x$从小到大排序

现在,我们从前往后,依次考虑当前点$(x,y)$,去连边满足其第2个条件

如果之前存在点$(x-1,y+1)$“未完全合法”,显然从中任选一个连边即可,连边后$(x,y)$也成为一个“未完全合法”的点(还需要与$(x\pm 1,y-1)$连边),暂不处理

否则,如果之前存在点$(x-1,y-1)$,直接连边即可,即满足条件

否则,再找到$(x-1,y+1)$连边(若$x=0$时不需要连,否则必然存在),并作为“未完全合法”的点

另外,若$y=x+1$且$(x,y)$作为“未完全合法”的点,注意到$(x+1,y-1)$实际上是$(x,y)$自己,因此若之间存在点$(x,y)$“未完全合法”,将这两点连边即可(并取消两点“未完全合法”的标记)

最终,对于剩下的“未完全合法”的点$(x,y)$,找到$(x\pm 1,y-1)$连边即可,由于必然存在,即边数加上“未完全合法”的点数量即可

(当然这个数量也可以在修改过程中顺便加上)

由此,用map维护$(x,y)$上“未完全合法”的点数量即可支持此过程,时间复杂度为$o(n\log n)$

(关于这一做法的正确性,即是一个贪心,比较显然)

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 200005
4 struct Edge{
5 int nex,to;
6 }edge[N<<2];
7 queue<int>q;
8 vector<pair<int,int> >v;
9 map<int,int>mat_vis[N],mat[N];
10 int E,t,n,m,x,y,ans,head[N],vis[N],d[N];
11 void add(int x,int y){
12 edge[E].nex=head[x];
13 edge[E].to=y;
14 head[x]=E++;
15 }
16 void bfs(){
17 d[1]=0;
18 q.push(1);
19 vis[1]=1;
20 while (!q.empty()){
21 int k=q.front();
22 q.pop();
23 for(int i=head[k];i!=-1;i=edge[i].nex)
24 if (!vis[edge[i].to]){
25 d[edge[i].to]=d[k]+1;
26 q.push(edge[i].to);
27 vis[edge[i].to]=1;
28 }
29 }
30 }
31 int main(){
32 scanf("%d",&t);
33 while (t--){
34 scanf("%d%d",&n,&m);
35 E=ans=0;
36 for(int i=0;i<=(n<<1);i++){
37 head[i]=d[i]=-1;
38 vis[i]=0;
39 mat_vis[i].clear(),mat[i].clear();
40 }
41 for(int i=1;i<=m;i++){
42 scanf("%d%d",&x,&y);
43 add(x,y+n);
44 add(y+n,x);
45 add(x+n,y);
46 add(y,x+n);
47 }
48 bfs();
49 if (d[n+1]<0){
50 printf("%d\n",n-1);
51 continue;
52 }
53 v.clear();
54 for(int i=1;i<=n;i++)v.push_back(make_pair(min(d[i],d[i+n]),max(d[i],d[i+n])));
55 sort(v.begin(),v.end());
56 for(int i=0;i<n;i++)mat_vis[v[i].first][v[i].second]=1;
57 for(int i=0;i<n;i++){
58 x=v[i].first,y=v[i].second;
59 if ((x)&&(mat[x-1][y+1])){
60 mat[x-1][y+1]--;
61 mat[x][y]++;
62 ans++;
63 }
64 else{
65 if ((x)&&(mat_vis[x-1][y-1]))ans++;
66 else{
67 mat[x][y]++;
68 ans+=1+(x>0);
69 }
70 }
71 if ((y==x+1)&&(mat[x][y]>=2)){
72 mat[x][y]-=2;
73 ans--;
74 }
75 }
76 printf("%d\n",ans);
77 }
78 }

[luogu7417]Minimizing Edges P的更多相关文章

  1. 读书笔记-《Training Products of Experts by Minimizing Contrastive Divergence》

    Training Products of Experts by Minimizing Contrastive Divergence(以下简称 PoE)是 DBN 和深度学习理论的 肇始之篇,最近在爬梳 ...

  2. 【OpenMesh】Some basic operations: Flipping and collapsing edges

    这一节中你将学到一些OpenMesh中早已提供的基础操作. 内容包括三角形网格边的翻转以及通过连接邻接的顶点边缘折叠. 三角形网格的翻转(Flipping edges) 考虑到两个邻接面的三角形网格中 ...

  3. R 网络图 nodes,edges属性计算

    前面提到了用R画网络图,免不了要对网络图nodes和edges的特征做一些统计.分享下我的代码: ########## nodes edges的统计########### # ####nodes的度有 ...

  4. Google SketchUp Cookbook: (Chapter 3) Intersection Edges: Cutting and Trimming

    软件环境 SketchUp Pro 2018 参考书籍 Google SketchUp Cookbook Trimming an Object 使用 Intersect with Model 裁剪物体 ...

  5. CF962F Simple Cycles Edges

    CF962F Simple Cycles Edges 给定一个连通无向图,求有多少条边仅被包含在一个简单环内并输出 \(n,\ m\leq10^5\) tarjan 首先,一个连通块是一个环,当且仅当 ...

  6. atcoder NIKKEI Programming Contest 2019 E - Weights on Vertices and Edges

    题目链接:Weights on Vertices and Edges 题目大意:有一个\(n\)个点\(m\)条边的无向图,点有点权,边有边权,问至少删去多少条边使得对于剩下的每一条边,它所在的联通块 ...

  7. Maya cmds filterExpand 列出 选择的 uvs vertices faces edges 等 component 类型

    Maya cmds filterExpand 列出 选择的 uvs vertices faces edges 等 component 类型 cmds.ls() 的 flags 中没有指明 uvs 等这 ...

  8. Maya cmds pymel 快速选择hard edges(硬边)

    Maya cmds pymel 快速选择hard edges(硬边) import maya.cmds as cmds cmds.polySelectConstraint(m = 3, t = 0x8 ...

  9. Codeforces 160D Edges in MST tarjan找桥

    Edges in MST 在用克鲁斯卡尔求MST的时候, 每个权值的边分为一类, 然后将每类的图建出来, 那些桥就是必须有的, 不是桥就不是必须有. #include<bits/stdc++.h ...

随机推荐

  1. C语言日记① 初识C

    概念 c语言是一种计算机语言 也就是人与计算机打交道的语言 在早期,因为计算机使用的二进制 所以早期写代码都是科学家来写的使用对应的功能二进制代码 需要用到手册,所以开发不方便 在后来,人们发明了汇编 ...

  2. JVM学习笔记——栈区

    栈区 Stack Area 栈是运行时的单位,堆是存储单位,栈解决程序的运行问题,即程序如何执行,如何处理数据. 每个线程在创建时都创建一个该线程私有的虚拟机栈,每个栈里有许多栈帧,一个栈帧对应一个 ...

  3. 精准容量、秒级弹性,压测工具 + SAE 方案如何完美突破传统大促难关?

    作者 | 代序 阿里云云原生技术团队 本文整理自<Serverless 技术公开课>,"Serverless"公众号后台回复"入门",即可获取系列文 ...

  4. Parameter index out of range(1 > number of parameters, which is 0)参数索引超出范围

    今天在写项目的过程中,有一个模块是做多选删除操作,通过servlet获得多选框的value组,然后执行sql操作.如下: 1 @RequestMapping( "/delteCouse.do ...

  5. Linux Manual

    man 命令用来访问存储在Linux系统上的手册页面.在想要查找的工具的名称前面输入man命 令,就可以找到那个工具相应的手册条目. 手册页不是唯一的参考资料.还有另一种叫作 info 页面的信息.可 ...

  6. 【UE4 设计模式】抽象工厂模式 Abstract Factory Pattern

    概述 描述 提供一个创建一系列相关或相互依赖对象的接口,而无须指定它们具体的类:具体的工厂负责实现具体的产品实例 抽象工厂中每个工厂可以创建多种产品(如苹果公司生产iPhone.iPad): 工厂方法 ...

  7. 【UE4 调试】提升UE4源码版本Setup下载速度

    更改setup.bat部分参数

  8. Beta阶段第二次会议

    时间:2020.5.18 工作进展 姓名 工作 难度 完成度 ltx 1.在开小程序开发文档,学习相关知识 轻 85% xyq 1.完成活动场地申请可视化代码(耗时半天) 中 100% lm 1.设计 ...

  9. TVS管相关知识

    在设计中,使用到了TVS管,在之前的设计中没有特别关注TVS管.今天查了一些资料,算是简单的有个了解. TVS管是一种保护器件.它的英文全称为 transient voltage suppressor ...

  10. Linux该如何学习新手入门遇到问题又该如何解决

    本节旨在介绍对于初学者如何学习 Linux 的建议.如果你已经确定对 Linux 产生了兴趣,那么接下来我们介绍一下学习 Linux 的方法. 如何去学习 学习大多类似庖丁解牛,对事物的认识一般都是由 ...