题目传送门

题目大意

给出一个长度为 \(n\) 的字符串,对于每个 \(k\in [0,n]\),求出有多少个长度为 \(m\) 的字符串满足两者最长公共子序列长度为 \(k\)。

\(n\le 15,m\le 10^3\),答案对 \(10^9+7\) 取模。

思路

难得扣shi。。。

首先,我们发现如果对两个已知字符串求最长公共子序列,那么我们可以设 \(f_{i,j}\) 表示第 1 个字符串匹配到 \(i\),第 2 个字符串匹配到 \(j\) 的最长匹配长度。不难得到转移式:

\[f_{i,j}=f_{i-1,j-1}+1\{a_i=b_j\}
\]
\[f_{i,j}=\max\{f_{i-1,j},f_{i,j-1}\}
\]

于是你发现我们一个字符串其实并不需要知道每一位,我们只需要知道 \(f_{i,j}\) 即可。但是你发现你不好把这个压进状态里面,但是你发现对于每一个 \(i\),\(j\) 每变化 \(1\) 位答案最多只会增加 \(1\),于是你可以考虑把每一位的增加量存进状态里面,这样你就可以做到 \(\Theta(2^nm)\)了。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000007
#define MAXM 1005
#define MAXN 15 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} char s[MAXN];
int n,m,ans[MAXN],dp[1 << MAXN][MAXM];
void Add (int &a,int b){a = a + b >= mod ? a + b - mod : a + b;} int a[MAXN],b[MAXN],trans[1 << MAXN][4]; int getid (char c){return c == 'A' ? 0 : (c == 'T' ? 1 : (c == 'C' ? 2 : 3));} void init (){
for (Int S = 0;S < 1 << n;++ S){
for (Int i = 1;i <= n;++ i) a[i] = a[i - 1] + (S >> i - 1 & 1);
for (Int i = 0;i < 4;++ i){
for (Int j = 1;j <= n;++ j)
if (getid (s[j]) == i) b[j] = a[j - 1] + 1;
else b[j] = max (b[j - 1],a[j]);
trans[S][i] = 0;
for (Int j = 1;j <= n;++ j) trans[S][i] |= b[j] - b[j - 1] << j - 1;
}
}
} int popcount (int S){
int res = 0;for (Int i = 0;i < n;++ i) res += S >> i & 1;
return res;
} signed main(){
int t;read (t);
while (t --> 0){
scanf ("%s",s + 1),read (m);
n = strlen (s + 1),init ();
memset (dp,0,sizeof (dp)),dp[0][0] = 1;
for (Int i = 0;i < m;++ i)
for (Int S = 0;S < 1 << n;++ S)
for (Int j = 0;j < 4;++ j)
Add (dp[trans[S][j]][i + 1],dp[S][i]);
for (Int i = 0;i <= n;++ i) ans[i] = 0;
for (Int S = 0;S < 1 << n;++ S) Add (ans[popcount (S)],dp[S][m]);
for (Int i = 0;i <= n;++ i) write (ans[i]),putchar ('\n');
}
return 0;
}

题解 Hero meet devil的更多相关文章

  1. 【BZOJ3864】Hero meet devil DP套DP

    [BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...

  2. bzoj 3864: Hero meet devil [dp套dp]

    3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...

  3. BZOJ 3864 Hero meet devil 超详细超好懂题解

    题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...

  4. BZOJ3864 & HDU4899:Hero meet devil——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=3864 http://acm.hdu.edu.cn/showproblem.php?pid=4899 ...

  5. bzoj3864: Hero meet devil

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  6. HDU 4899 Hero meet devil(状压DP)(2014 Multi-University Training Contest 4)

    Problem Description There is an old country and the king fell in love with a devil. The devil always ...

  7. BZOJ3864: Hero meet devil(dp套dp)

    Time Limit: 8 Sec  Memory Limit: 128 MBSubmit: 397  Solved: 206[Submit][Status][Discuss] Description ...

  8. BZOJ3864: Hero meet devil【dp of dp】

    Description There is an old country and the king fell in love with a devil. The devil always asks th ...

  9. bzoj 3864: Hero meet devil(dp套dp)

    题面 给你一个只由\(AGCT\)组成的字符串\(S (|S| ≤ 15)\),对于每个\(0 ≤ .. ≤ |S|\),问 有多少个只由\(AGCT\)组成的长度为\(m(1 ≤ m ≤ 1000) ...

随机推荐

  1. 【C语言】第2章 算法 — 程序的灵魂

    第2章 算法 - 程序的灵魂 一个程序主要包括以下两方面的信息: 对数据的描述.在程序中要指定用到哪些数据以及这些数据的类型和数据的组织形式 也就是数据结构(data structure) 对操作的描 ...

  2. Git使用教程七——Git实用技能

    Git实用技能 1.图形管理工具 Github for Desktop Source tree 老牌的GitGUl管理工具了,也号称是最好用的Git GUI工具.功能丰富,基本操作和高 级操作都非常流 ...

  3. 面试官:如何实现LRU?你学会了吗?

    面试官:来了,老弟,LRU缓存实现一下? 我:直接LinkedHashMap就好了. 面试官:不要用现有的实现,自己实现一个. 我:..... 面试官:回去等消息吧.... 大家好,我是程序员学长,今 ...

  4. JS 之 每日一题 之 算法 ( 有多少小于当前数字的数字 )

    给你一个数组 nums,对于其中每个元素 nums[i],请你统计数组中比它小的所有数字的数目. 换而言之,对于每个 nums[i] 你必须计算出有效的 j 的数量,其中 j 满足 j != i 且 ...

  5. APT组织跟踪与溯源

    前言 在攻防演练中,高质量的蓝队报告往往需要溯源到攻击团队.国内黑产犯罪团伙.国外APT攻击. 红队现阶段对自己的信息保护的往往较好,根据以往溯源成功案例来看还是通过前端js获取用户ID信息.mysq ...

  6. try/catch捕获处理异常

    1.throws是中断处理,后续代码不能执行 try/catch方法体之后的后续代码有没有异常都可以继续执行: 2.当try方法体中出现异常才会执行catch方法体中代码

  7. shell--目录通配符

    符号 说明 ? 匹配任一字符 * 匹配一个或多个字符 [a-z0-9] 类似于正则表达式, 若想匹配?可用[?] [!a-z] 类似于正则表达式[^a-z], 不匹配中括号中的内容 {string1, ...

  8. python库--tensorflow--数学函数

    官方API(需FQ) 中文API 方法 返回值类型 参数 说明 算数运算符 .add() Tensor x, y, name=N 加法(若x,y都为tensor, 数据类型需一致, 以下所有x,y都如 ...

  9. windows中ren(rename-重命名)命令的使用方法

    脚本(*.dat文件): cd /d %~dp0 ren * *.mp3

  10. symfony中模板生成路径两种方式

    1. 使用url('route_a_b_c')  这种方式会是全路径 : http://www.test.com/a/b/c 2. 使用path('route_a_b_c') 这种方式只是路径: /a ...