CF1539C Stable Groups[题解]
Stable Groups
题目大意
给定 \(n\) 个数 \(a_i\) ,你可以将这些数分成若干组,但每一组的元素满足按升序排列后,相邻两个元素值的差不超过 \(x\) 。在分组前,你可以向这些数中插入至多 \(k\) 个为可以试任意值的元素。
问最少能够分成几组满足要求的数?
分析
其实这道题应该是一个比较明显的贪心吧。
考虑先直接将这 \(n\) 个数尽量分组,实在不能连在一起的就先断开,求出不插入元素最少分出的组。
怎么分?先排个序,然后从头到尾遍历,能够放一起就放,不能也就是差超过 \(x\) 了,断开就完了。
不难发现这样我们分出来的组存在严格的大小关系,于是我们能够很轻松的求出每个组之间的差值。即用元素相对较大组中的最小元素减去元素相对较小组中的最大元素,将其存在数组内。
求出这些差值后我们排个序,然后就可以开始填了,很显然先合并差值小的两个组一定不劣。
CODE
#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N=2e5+10;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9') { if(ch=='-') w*=-1; ch=getchar(); }
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
int n,k,x,ans;
int tot,a[N],com[N];
inline bool cmp(int x,int y) { return x>y; }
signed main()
{
n=read(),k=read(),x=read();
for(register int i=1;i<=n;i++) a[i]=read();
sort(a+1,a+n+1,cmp);
for(register int i=1;i<n;i++) //不加学生,分组
if(a[i]-a[i+1]>x) com[++tot]=a[i]-a[i+1];
ans=tot+1;
sort(com+1,com+tot+1);
for(register int i=1;i<=tot;i++){
int need=com[i]/x;
if(com[i]%x==0) need-=1;
if(need>k) break;
else k-=need,ans-=1;
}
printf("%lld\n",ans);
return 0;
}
CF1539C Stable Groups[题解]的更多相关文章
- 算法与数据结构基础 - 图(Graph)
图基础 图(Graph)应用广泛,程序中可用邻接表和邻接矩阵表示图.依据不同维度,图可以分为有向图/无向图.有权图/无权图.连通图/非连通图.循环图/非循环图,有向图中的顶点具有入度/出度的概念. 面 ...
- LeetCode 题解之 Positions of Large Groups
1.题目描述 2.问题分析 从头遍历字符串,使用一个局部迭代器和局部变量记录该字符个数.如果个数>= 3 ,则将此时的迭代器位置和局部迭代器的位置保存到局部vector中.再将这个局部vecto ...
- Understanding Kafka Consumer Groups and Consumer Lag
In this post, we will dive into the consumer side of this application ecosystem, which means looking ...
- CodeForces 173E Camping Groups 离线线段树 树状数组
Camping Groups 题目连接: http://codeforces.com/problemset/problem/173/E Description A club wants to take ...
- Codeforces Round #257 (Div. 1)A~C(DIV.2-C~E)题解
今天老师(orz sansirowaltz)让我们做了很久之前的一场Codeforces Round #257 (Div. 1),这里给出A~C的题解,对应DIV2的C~E. A.Jzzhu and ...
- [ext4]04 磁盘布局 - Meta Block Groups
Meta Block Groups,可以翻译为元块组集. 如果不采用Meta Block Groups特性,在每个冗余备份的超级块的后面是一个完整的(包含所有块组描述符的)块组描述符表的备份.如前所述 ...
- [POJ 3487]The Stable Marriage Problem
Description The stable marriage problem consists of matching members of two different sets according ...
- POJ 2408 - Anagram Groups - [字典树]
题目链接:http://poj.org/problem?id=2408 World-renowned Prof. A. N. Agram's current research deals with l ...
- leetcode & lintcode 题解
刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...
随机推荐
- GO语言常用标准库01---strings包
package main import ( "fmt" "strings" ) func main031() { fmt.Printf("字符形式:% ...
- H.264/H265码流解析
H.264/H265码流解析 一.H.264码流解析 一个原始的H.264 NALU 单元常由 [StartCode] [NALU Header] [NALU Payload] 三部分组成 一个原始的 ...
- ARM Cortex-M嵌入式C基础编程(上)
ARM Cortex-M嵌入式C基础编程(上) ARM Cortex-M Embedded C Fundamentals/Tutorial -Aviral Mittal 此技术是关于从编写简单的嵌入式 ...
- node和gulp版本的坑
现在node版本最新的稳定版在14+ 然后我在接手项目的时候使用gulp打包,怎么也打包不了,这个问题纠结了挺久,然后百度了下,发现版本的问题 node 12+ 以上的版本不兼容 gulp 3的版本 ...
- 基于SKLearn的SVM模型垃圾邮件分类——代码实现及优化
一. 前言 由于最近有一个邮件分类的工作需要完成,研究了一下基于SVM的垃圾邮件分类模型.参照这位作者的思路(https://blog.csdn.net/qq_40186809/article/det ...
- 【HTML】同页面锚点跳转
跳转: <a href="#maodian001">去吧!</a> 锚点: <a id="maodian001"></ ...
- 深度解密:Java与线程的关系
并发不一定要依赖多线程(如PHP的多进程并发),但在Java中谈论并发,大多数都与线程脱不开关系. 线程的实现 线程是CPU调度的基本单位,Thread类与大部分的Java API有显著的差别,它的所 ...
- 浏览Github必备的5款神器级别的Chrome插件
我们知道 Github 是程序员特有的宝藏,也可以称它为 GayHub, 大家浏览 Github 的时候,一定遇到过下面这些问题: 不克隆到本地的情况下阅读代码困难. 无法单独下载仓库中的某个文件/文 ...
- noip2013 总结
转圈游戏 题目 n 个小伙伴(编号从 0 到 n-1)围坐一圈玩游戏.按照顺时针方向给 n 个位置编号,从0 到 n-1.最初,第 0 号小伙伴在第 0 号位置,第 1 号小伙伴在第 1 号位置,-- ...
- 【spring源码系列】之【Bean的生命周期】
为源码付出的每一分努力都不会白费. 1. Bean的实例化概述 前一篇分析了BeanDefinition的封装过程,最终将beanName与BeanDefinition以一对一映射关系放到beanDe ...