动手写一个LRU缓存
前言
LRU 是 Least Recently Used
的简写,字面意思则是最近最少使用
。
通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被占满。
在redis
的数据淘汰策略中就包含LRU淘汰算法
如何实现一个完整的LRU缓
存呢?这个缓存要满足:
- 这个缓存要记录使用的顺序
- 随着缓存的使用变化,要能更新缓存的顺序
基于这种特点,可以使用一个常用的数据结构:链表
- 每次加入新的缓存时都添加到链表的
头节点
- 当缓存再次被使用时移动缓存到
头节点
- 当添加的缓存超过能够缓存的最大时,删除链表
尾节点
的元素
单链表和双向链表的选择
单链表的方向只有一个,节点中有一个next
指针指向后继节点。而双链表有两个指针,可以支持两个方向,每个节点不止有一个next
指针,还有一个pre
v指针指向前驱节点
双向链表需要额外的两个空间来存放前驱节点的指针prev
和后继节点指针next
,所以,存储相同大小的数据,双向链表需要更多的空间。虽然相比单向链表,双向链表的每个节点多个一个指针空间,但是这样的结构带来了更多的灵活性,在某些场景下非常适合使用这样的数据结构。删除和添加节点操作,双向链表的时间复杂度为O(1)
在单向链表中,删除和添加节点的时间复杂度已经是O(1)了,双向链表还能比单向链表更加高效吗?
先来看看删除操作
:
在删除操作中有两种情况:
- 删除给定值的节点
- 删除给定指针的节点
对于第一种情况,无论是删除给定值或者是给定的指针都需要从链表头开始依此遍历,直到找到所要删除的值
尽管删除这个操作的时间复杂度为O(1),但是删除的时间消耗主要是遍历节点,对应的时间复杂度为O(n),所以总的时间复杂度为O(n)。
对于第二种情况,已经给定了要删除的节点,如果使用单向链表,还得从链表头部开始遍历,直到找到待删除节点的前驱节点。但是对于双向链表来所,这就很有优势了,双向链表的待删除节点种包含了前驱节点,删除操作只需要O(1)的时间复杂度
同理对于添加操作:
我们如果想要在指定的节点前面或者后面插入一个元素,双向了链表就有很大的优势,他可以在O(1)的时间复杂度搞定,而单向链表还需要从头遍历。
所以,虽然双向链表比单向链表需要更多的存储空间,但是双向链表的应用更加广泛,JDK种LinkedHashMap这种数据结构就使用了双向链表
如何实现LRU缓存
单链表实现
下面我们基于单链表给出简单的代码实现:
package com.ranger.lru;
import java.util.HashMap;
import java.util.Map;
/**
*
* @author ranger
* LRU缓存
*
*/
public class LRUMap<K,V> {
/**
* 定义链表节点
* @author ranger
*
* @param <K>
* @param <V>
*/
private class Node<K, V> {
private K key;
private V value;
Node<K, V> next;
public Node(K key, V value) {
this.key = key;
this.value = value;
}
public Node() {
}
}
/**
* 缓存最大值
*/
private int capacity;
/**
* 当前缓存数量
*/
private int size;
/**
* 缓存链表头节点
*/
private Node<K,V> head;
/**
* 缓存链表尾节点
*/
private Node<K,V> tail;
/**
* 定义带参构造函数,构造一个为空的双向链表
* @param capacity 缓存最大容量
*/
public LRUMap(int capacity) {
this.capacity = capacity;
head = null;
tail = null;
size = 0;
}
/**
* 无参构造函数,初始化容量为16
*/
public LRUMap() {
this(16);
}
/**
* 向双向链表中添加节点
* @param key
* @param value
*/
public void put(K key,V value) {
addNode(key,value);
}
/**
* 根据key获取缓存中的Value
* @param key
* @return
*/
public V get(K key) {
Node<K,V> retNode = getNode(key);
if(retNode != null) {
// 存在,插入头部
moveToHead(retNode);
return retNode.value;
}
// 不存在
return null;
}
/**
* 移动给定的节点到头节点
* @param node
*/
public void moveToHead(Node<K,V> node) {
// 如果待移动节点是最后一个节点
if(node == tail) {
Node prev = head;
while(prev.next != null && prev.next != node) {
prev = prev.next;
}
tail = prev;
node.next = head;
head = node;
prev.next = null;
}else if(node == head){ // 如果是头节点
return;
}else {
Node prev = head;
while(prev.next != null && prev.next != node) {
prev = prev.next;
}
prev.next = node.next;
node.next = head;
head = node;
}
}
/**
* 获取给定key的节点
* @param key
* @return
*/
private Node<K,V> getNode(K key){
if(isEmpty()) {
throw new IllegalArgumentException("list is empty,cannot get node from it");
}
Node<K,V> cur = head;
while(cur != null) {
if(cur.key.equals(key)) {
return cur;
}
cur = cur.next;
}
return null;
}
/**
* 添加到头节点
* @param key
* @param value
*/
private void addNode(K key,V value) {
Node<K,V> node = new Node<>(key,value);
// 如果容量满了,删除最后一个节点
if(size == capacity) {
delTail();
}
addHead(node);
}
/**
* 删除最后一个节点
*/
private void delTail() {
if(isEmpty()) {
throw new IllegalArgumentException("list is empty,cannot del from it");
}
// 只有一个元素
if(tail == head) {
tail = null;
head = tail;
}else {
Node<K,V> prev = head;
while(prev.next != null && prev.next != tail) {
prev = prev.next;
}
prev.next = null;
tail = prev;
}
size--;
}
/**
* 链表是否为空
* @return
*/
private boolean isEmpty() {
return size == 0;
}
/**
* 添加节点到头头部
* @param node
*/
private void addHead(Node node) {
// 如果链表为空
if(head == null) {
head = node;
tail = head;
}else {
node.next = head;
head = node;
}
size ++;
}
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
Node<K,V> cur = head;
while(cur != null) {
sb.append(cur.key)
.append(":")
.append(cur.value);
if(cur.next != null) {
sb.append("->");
}
cur = cur.next;
}
return sb.toString();
}
/**
* 测试
* @param args
*/
public static void main(String[] args) {
LRUMap<String,String> lruMap = new LRUMap(3) ;
lruMap.put("1","tom") ;
lruMap.put("2","lisa") ;
lruMap.put("3","john") ;
System.out.println(lruMap.toString());
lruMap.put("4","july") ;
System.out.println(lruMap.toString());
lruMap.put("5","jack") ;
System.out.println(lruMap.toString());
String value = lruMap.get("3");
System.out.println(lruMap.toString());
System.out.println("the value is: "+value);
String value1 = lruMap.get("1");
System.out.println(value1);
System.out.println(lruMap.toString());
}
}
输出结果:
3:john->2:lisa->1:tom
4:july->3:john->2:lisa
5:jack->4:july->3:john
3:john->5:jack->4:july
the value is: john
null
3:john->5:jack->4:july
LinkedHashMap实现
了解LinkedHashMap
的都知道,它是基于链表实现,其中还有一个 accessOrder
成员变量,默认是 false
,默认按照插入顺序排序,为 true
时按照访问顺序排序,也可以调用 构造函数传入accessOrder
LinkedHashMap
的排序方式有两种:
- 根据写入顺序排序。
- 根据访问顺序排序。
其中根据访问顺序排序时,每次 get
都会将访问的值移动到链表末尾,这样重复操作就能的到一个按照访问顺序排序的链表
我们可以重写LinkedHashMap
中的removeEldestEntry
方法来决定在添加节点的时候是否需要删除最久未使用的节点
代码实现如下:
public class LRULinkedHashMap<K,V> {
/**
* 缓存map
*/
private LinkedHashMap<K,V> cacheMap;
/**
* 当前缓存数量
*/
private int size;
/**
* 构造一个cacheMap,并设置可以缓存的数量
* @param size
*/
public LRULinkedHashMap(int size) {
this.size = size;
cacheMap = new LinkedHashMap<K,V>(16,0.75F,true) {
@Override
// 重写方法,判断是否删除最久没使用的节点
protected boolean removeEldestEntry(Map.Entry eldest) {
if (size + 1 == cacheMap.size()){
return true ;
}else {
return false ;
}
}
};
}
/**
* 添加缓存
* @param key
* @param value
*/
public void put(K key,V value){
cacheMap.put(key,value) ;
}
/**
* 获取缓存
* @param key
* @return
*/
public V get(K key){
return cacheMap.get(key) ;
}
public String toString() {
StringBuilder sb = new StringBuilder();
Set<Entry<K, V>> entrySet = cacheMap.entrySet();
for (Entry<K,V> entry : entrySet) {
sb.append(entry.getKey())
.append(":")
.append(entry.getValue())
.append("<-");
}
return sb.toString();
}
public static void main(String[] args) {
LRULinkedHashMap<String,Integer> map = new LRULinkedHashMap(3) ;
map.put("1",1);
map.put("2",2);
map.put("3",3);
System.out.println(map);
map.put("4", 4);
System.out.println(map);
}
}
动手写一个LRU缓存的更多相关文章
- 动手实现一个 LRU cache
前言 LRU 是 Least Recently Used 的简写,字面意思则是最近最少使用. 通常用于缓存的淘汰策略实现,由于缓存的内存非常宝贵,所以需要根据某种规则来剔除数据保证内存不被撑满. 如常 ...
- 搞定redis面试--Redis的过期策略?手写一个LRU?
1 面试题 Redis的过期策略都有哪些?内存淘汰机制都有哪些?手写一下LRU代码实现? 2 考点分析 1)我往redis里写的数据怎么没了? 我们生产环境的redis怎么经常会丢掉一些数据?写进去了 ...
- 动手写一个简单版的谷歌TPU-指令集
系列目录 谷歌TPU概述和简化 基本单元-矩阵乘法阵列 基本单元-归一化和池化(待发布) TPU中的指令集 SimpleTPU实例: (计划中) 拓展 TPU的边界(规划中) 重新审视深度神经网络中的 ...
- 【redis前传】自己手写一个LRU策略 | redis淘汰策略
title: 自己手写一个LRU策略 date: 2021-06-18 12:00:30 tags: - [redis] - [lru] categories: - [redis] permalink ...
- 动手写一个简单版的谷歌TPU-矩阵乘法和卷积
谷歌TPU是一个设计良好的矩阵计算加速单元,可以很好的加速神经网络的计算.本系列文章将利用公开的TPU V1相关资料,对其进行一定的简化.推测和修改,来实际编写一个简单版本的谷歌TPU.计划实现到行为 ...
- 死磕 java同步系列之自己动手写一个锁Lock
问题 (1)自己动手写一个锁需要哪些知识? (2)自己动手写一个锁到底有多简单? (3)自己能不能写出来一个完美的锁? 简介 本篇文章的目标一是自己动手写一个锁,这个锁的功能很简单,能进行正常的加锁. ...
- 死磕 java线程系列之自己动手写一个线程池
欢迎关注我的公众号"彤哥读源码",查看更多源码系列文章, 与彤哥一起畅游源码的海洋. (手机横屏看源码更方便) 问题 (1)自己动手写一个线程池需要考虑哪些因素? (2)自己动手写 ...
- 自己动手写一个服务网关-java
自己动手写一个服务网关 原文链接:https://www.cnblogs.com/bigben0123/p/9252444.html 引言 什么是网关?为什么需要使用网关? 如图所示,在不使用网关的情 ...
- 动手写一个简单的Web框架(模板渲染)
动手写一个简单的Web框架(模板渲染) 在百度上搜索jinja2,显示的大部分内容都是jinja2的渲染语法,这个不是Web框架需要做的事,最终,居然在Werkzeug的官方文档里找到模板渲染的代码. ...
随机推荐
- Python_getattr+__import__ 实现动态加载模块、类对象或函数
__import__() 语法 __import__(name[, globals[, locals[, fromlist[, level]]]]) 参数 name -- 字符串,模块的导入路径 说明 ...
- sqlserver - 判断字段是否是纯数字
PATINDEX('%[^0-9|.|-|+]%',w.waterMeterNo)=0 如 SELECT w.* FROM [dbo].[waterMeterInfo] w where isnull( ...
- List<FieldModelBase> 转 DataTable
// List<FieldModelBase> 转 DataTable private DataTable ListToDataTable(List<FieldModelBase&g ...
- PowerShell 管道符之Select的使用方法【一】
之前我文章中我们略微提到过管道符的操作,但并不多,这篇主要讲解一下详细的使用方法 假设我们要对数组中的数字1-10中我想要从右往左换句话说就是从字符串最后一个字开始倒过来往前数截取6个子字符串时可以这 ...
- spring boot 使用 AOP 的正确姿势 --- 心得
1.前言 向spring boot转型,所有的配置基本上是用注解完成 ,以前使用spring MVC 需要写一大堆xml文件来配置. 基本上没什么变化,但是有些地方需要注意: 环绕通知不要使用异常捕获 ...
- sublime text 3 添加packagecontrol
打开sublime控制台输入 import urllib.request,os,hashlib; h = '6f4c264a24d933ce70df5dedcf1dcaee' + 'ebe013ee1 ...
- PAT 乙级 1003. 我要通过!(20) (C语言描述)
"答案正确"是自动判题系统给出的最令人欢喜的回复.本题属于PAT的"答案正确"大派送 -- 只要读入的字符串满足下列条件,系统就输出"答案正确&quo ...
- CODING 携手 Thoughtworks 助力老百姓大药房打造”自治、自决、自动”的敏捷文化
老百姓大药房是中国具有影响力的药品零售连锁企业,中国药品零售企业综合竞争力百强冠军.中国服务业 500 强企业.湖南省百强企业. 自 2001 年创立以来,现已成功开发了湖南. 陕西.浙江.江苏等 * ...
- 园子的推广博文:欢迎收看 Apache Flink 技术峰会 FFA 2021 的视频回放
园子专属收看链接:https://developer.aliyun.com/special/ffa2021/live#?utm_content=g_1000316459 Flink Forward 是 ...
- 在Django中使用zerorpc
在Django中使用zerorpc 前言 随着系统架构从集中式单点服务器到分布式微服务方向的迁移,RPC是一个不可回避的话题.如何在系统中引入对开发者友好,性能可靠的RPC服务是一个值得深思的问题. ...