简介

为什么世界上有这么多JAVA的程序员呢?其中一个很重要的原因就是JAVA相对于C++而言,不需要考虑对象的释放,一切都是由垃圾回收器来完成的。在崇尚简单的现代编程世界中,会C++的高手越来越少,会JAVA的程序员越来越多。

JVM的垃圾回收器中一个很重要的概念就是Reference count,也就是对象的引用计数,用来控制对象是否还被引用,是否可以被垃圾回收。

netty也是运行在JVM中的,所以JVM中的对象引用计数也适用于netty中的对象。这里我们说的对象引用指的是netty中特定的某些对象,通过对象的引用计数来判断这些对象是否还被使用,如果不再被使用的话就可以把它们(或它们的共享资源)返回到对象池(或对象分配器)。

这就叫做netty的对象引用计数技术,其中一个最关键的对象就是ByteBuf。

ByteBuf和ReferenceCounted

netty中的对象引用计数是从4.X版本开始的,ByteBuf是其中最终要的一个应用,它利用引用计数来提高分配和释放性能.

先来看一下ByteBuf的定义:

public abstract class ByteBuf implements ReferenceCounted, Comparable<ByteBuf>

可以看到ByteBuf是一个抽象类,它实现了ReferenceCounted的接口。

ReferenceCounted就是netty中对象引用的基础,它定义了下面几个非常重要的方法,如下所示:

int refCnt();

ReferenceCounted retain();

ReferenceCounted retain(int increment);

boolean release();

boolean release(int decrement);

其中refCnt返回的是当前引用个数,retain用来增加引用,而release用来释放引用。

ByteBuf的基本使用

刚分配情况下ByteBuf的引用个数是1:

ByteBuf buf = ctx.alloc().directBuffer();
assert buf.refCnt() == 1;

当调用他的release方法之后,refCnt就变成了0:

boolean destroyed = buf.release();
assert destroyed;
assert buf.refCnt() == 0;

当调用它的retain方法,refCnt就会加一:

ByteBuf buf = ctx.alloc().directBuffer();
assert buf.refCnt() == 1;
buf.retain();
assert buf.refCnt() == 2;

要注意的是,如果ByteBuf的refCnt已经是0了,就表示这个ByteBuf准备被回收了,如果再调用其retain方法,则会抛出IllegalReferenceCountException:refCnt: 0, increment: 1

所以我们必须在ByteBuf还未被回收之前调用retain方法。

既然refCnt=0的情况下,不能调用retain()方法,那么其他的方法能够调用吗?

我们来尝试调用一下writeByte方法:

        try {
buf.writeByte(10);
} catch (IllegalReferenceCountException e) {
log.error(e.getMessage(),e);
}

可以看到,如果refCnt=0的时候,调用它的writeByte方法会抛出IllegalReferenceCountException异常。

这样看来,只要refCnt=0,说明这个对象已经被回收了,不能够再使用了。

ByteBuf的回收

既然ByteBuf中保存的有refCnt,那么谁来负责ByteBuf的回收呢?

netty的原则是谁消费ByteBuf,谁就负责ByteBuf的回收工作。

在实际的工作中,ByteBuf会在channel中进行传输,根据谁消费谁负责销毁的原则,接收ByteBuf的一方,如果消费了ByteBuf,则需要将其回收。

这里的回收指的是调用ByteBuf的release()方法。

ByteBuf的衍生方法

ByteBuf可以从一个parent buff中衍生出很多子buff。这些子buff并没有自己的reference count,它们的引用计数是和parent buff共享的,这些提供衍生buff的方法有:ByteBuf.duplicate(), ByteBuf.slice() 和 ByteBuf.order(ByteOrder)。

buf = directBuffer();
ByteBuf derived = buf.duplicate();
assert buf.refCnt() == 1;
assert derived.refCnt() == 1;

因为衍生的byteBuf和parent buff共享引用计数,所以如果要将衍生的byteBuf传给其他的流程进行处理的话,需要调用retain()方法:

ByteBuf parent = ctx.alloc().directBuffer(512);
parent.writeBytes(...); try {
while (parent.isReadable(16)) {
ByteBuf derived = parent.readSlice(16);
derived.retain();
process(derived);
}
} finally {
parent.release();
}
... public void process(ByteBuf buf) {
...
buf.release();
}

ChannelHandler中的引用计数

netty根据是读消息还是写消息,可以分为InboundChannelHandler和OutboundChannelHandler,分别用来读消息和写消息。

根据谁消费,谁释放的原则,对Inbound消息来说,读取完毕之后,需要调用ByteBuf的release方法:

public void channelRead(ChannelHandlerContext ctx, Object msg) {
ByteBuf buf = (ByteBuf) msg;
try {
...
} finally {
buf.release();
}
}

但是如果你只是将byteBuf重发到channel中供其他的步骤进行处理,则不需要release:

public void channelRead(ChannelHandlerContext ctx, Object msg) {
ByteBuf buf = (ByteBuf) msg;
...
ctx.fireChannelRead(buf);
}

同样的在Outbound中,如果只是简单的重发,则不需要release:

public void write(ChannelHandlerContext ctx, Object message, ChannelPromise promise) {
System.err.println("Writing: " + message);
ctx.write(message, promise);
}

如果是处理了消息,则需要release:

public void write(ChannelHandlerContext ctx, Object message, ChannelPromise promise) {
if (message instanceof HttpContent) {
// Transform HttpContent to ByteBuf.
HttpContent content = (HttpContent) message;
try {
ByteBuf transformed = ctx.alloc().buffer();
....
ctx.write(transformed, promise);
} finally {
content.release();
}
} else {
// Pass non-HttpContent through.
ctx.write(message, promise);
}
}

内存泄露

因为reference count是netty自身来进行维护的,需要在程序中手动进行release,这样会带来一个问题就是内存泄露。因为所有的reference都是由程序自己来控制的,而不是由JVM来控制,所以可能因为程序员个人的原因导致某些对象reference count无法清零。

为了解决这个问题,默认情况下,netty会选择1%的buffer allocations样本来检测他们是否存在内存泄露的情况.

如果发生泄露,则会得到下面的日志:

LEAK: ByteBuf.release() was not called before it's garbage-collected. Enable advanced leak reporting to find out where the leak occurred. To enable advanced leak reporting, specify the JVM option '-Dio.netty.leakDetectionLevel=advanced' or call ResourceLeakDetector.setLevel()

上面提到了一个检测内存泄露的level,netty提供了4种level,分别是:

  • DISABLED---禁用泄露检测
  • SIMPLE --默认的检测方式,占用1% 的buff。
  • ADVANCED - 也是1%的buff进行检测,不过这个选项会展示更多的泄露信息。
  • PARANOID - 检测所有的buff。

具体的检测选项如下:

java -Dio.netty.leakDetection.level=advanced ...

总结

掌握了netty中的引用计数,就掌握了netty的财富密码!

本文的例子可以参考:learn-netty4

本文已收录于 http://www.flydean.com/43-netty-reference-cound/

最通俗的解读,最深刻的干货,最简洁的教程,众多你不知道的小技巧等你来发现!

欢迎关注我的公众号:「程序那些事」,懂技术,更懂你!

netty系列之:JVM中的Reference count原来netty中也有的更多相关文章

  1. netty系列之:不用怀疑,netty中的ByteBuf就是比JAVA中的好用

    目录 简介 ByteBuf和ByteBuffer的可扩展性 不同的使用方法 性能上的不同 总结 简介 netty作为一个优秀的的NIO框架,被广泛应用于各种服务器和框架中.同样是NIO,netty所依 ...

  2. netty系列之:netty中常用的对象编码解码器

    目录 简介 什么是序列化 重构序列化对象 序列化不是加密 使用真正的加密 使用代理 Serializable和Externalizable的区别 netty中对象的传输 ObjectEncoder O ...

  3. netty系列之:在netty中使用protobuf协议

    目录 简介 定义protobuf 定义handler 设置ChannelPipeline 构建client和server端并运行 总结 简介 netty中有很多适配不同协议的编码工具,对于流行的goo ...

  4. netty系列之:channel,ServerChannel和netty中的实现

    目录 简介 channel和ServerChannel netty中channel的实现 AbstractChannel和AbstractServerChannel LocalChannel和Loca ...

  5. netty系列之:EventExecutor,EventExecutorGroup和netty中的实现

    目录 简介 EventExecutorGroup EventExecutor EventExecutorGroup在netty中的基本实现 EventExecutor在netty中的基本实现 总结 简 ...

  6. netty系列之:netty中的核心MessageToByte编码器

    目录 简介 MessageToByte框架简介 MessageToByteEncoder ByteToMessageDecoder ByteToMessageCodec 总结 简介 之前的文章中,我们 ...

  7. netty系列之:netty中的核心编码器bytes数组

    目录 简介 byte是什么 netty中的byte数组的工具类 netty中byte的编码器 总结 简介 我们知道netty中数据传输的核心是ByteBuf,ByteBuf提供了多种数据读写的方法,包 ...

  8. netty系列之:netty中的核心解码器json

    目录 简介 java中对json的支持 netty对json的解码 总结 简介 程序和程序之间的数据传输方式有很多,可以通过二进制协议来传输,比较流行的像是thrift协议或者google的proto ...

  9. netty系列之:netty中的自动解码器ReplayingDecoder

    目录 简介 ByteToMessageDecoder可能遇到的问题 ReplayingDecoder的实现原理 总结 简介 netty提供了一个从ByteBuf到用户自定义的message的解码器叫做 ...

随机推荐

  1. python appium使用uiselector定位时,提示 Could not parse UiSelector argument: 'XXX' is not a string

    运行自动化代码,appium返回Could not parse UiSelector argument: 'XXX' is not a string,其中的xxx就是定位的元素 解决方案:外侧用 '' ...

  2. Module 4 - Azure SQL

    1)     Migrate AdventureWorks database from SQL Server instance to Azure SQL using DMA.2)     Update ...

  3. Redis介绍一

    一.五中数据类型 String: 字符串 Hash: 散列 List: 列表 Set: 集合 Sorted Set: 有序集合 Redis 发布订阅 Redis 发布订阅 (pub/sub) 是一种消 ...

  4. 关于包装类Integer,Long比较用==和equals的问题

    所有整型包装类对象之间值的比较,全部使用 equals 方法比较. 说明:对于 Integer var = ? 在-128 至 127 之间的赋值,Integer 对象是在 IntegerCache. ...

  5. Java构造器(构造方法)

    类中的构造器也成为构造方法,是在进行创建对象的时候必须调用的,并且构造器有以下两个特点: 1.必须和类名字相同 2.必须没有返回类型也不能写void public class Demo06 { //一 ...

  6. [Jetson Nano]Jetson Nano快速入门

    NVIDIAJetsonNano开发套件是适用于制造商,学习者和开发人员的小型AI计算机.相比Jetson其他系列的开发板,官方报价只要99美金,可谓是相当有性价比.本文如何是一个快速入门的教程,主要 ...

  7. 高度塌陷与 BFC

    1. 高度塌陷 在浮动布局中,父元素的高度默认是被子元素撑开的  当子元素浮动后,其会完全脱离文档流,子元素从文档流中脱离将会无法撑起父元素的高度,导致父元素的高度丢失  父元素高度丢失以后,其下的元 ...

  8. C# 同步 异步 回调 状态机 async await Demo

    源码 https://gitee.com/s0611163/AsyncAwaitDemo 为什么会研究这个? 我们项目的客户端和服务端通信用的是WCF,我就想,能不能用异步的方式调用WCF服务呢?或者 ...

  9. gorm中的更新

    保存所有字段 Save 会保存所有的字段,即使字段是零值. db.First(&user, 5)user.Name = sql.NullString{"王八", true} ...

  10. 源码分析axios(1)~源码分析、模拟axios的创建

    ■ 查看源码发现,起初axios[instance=bind(Axios.prototype.request, context);]是一个函数, 但后续[ utils.extend(instance, ...