py3nvml实现GPU相关信息读取
技术背景
随着模型运算量的增长和硬件技术的发展,使用GPU来完成各种任务的计算已经渐渐成为算法实现的主流手段。而对于运行期间的一些GPU的占用,比如每一步的显存使用率等诸如此类的信息,就需要一些比较细致的GPU信息读取的工具,这里我们重点推荐使用py3nvml来对python代码运行的一个过程进行监控。
常规信息读取
一般大家比较常用的就是nvidia-smi
这个指令,来读取GPU的使用率和显存占用、驱动版本等信息:
$ nvidia-smi
Wed Jan 12 15:52:04 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.42.01 Driver Version: 470.42.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Quadro RTX 4000 On | 00000000:03:00.0 On | N/A |
| 30% 39C P8 20W / 125W | 538MiB / 7979MiB | 16% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Quadro RTX 4000 On | 00000000:A6:00.0 Off | N/A |
| 30% 32C P8 7W / 125W | 6MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1643 G /usr/lib/xorg/Xorg 412MiB |
| 0 N/A N/A 2940 G /usr/bin/gnome-shell 76MiB |
| 0 N/A N/A 47102 G ...AAAAAAAAA= --shared-files 35MiB |
| 0 N/A N/A 172424 G ...AAAAAAAAA= --shared-files 11MiB |
| 1 N/A N/A 1643 G /usr/lib/xorg/Xorg 4MiB |
+-----------------------------------------------------------------------------+
但是如果不使用profile仅仅使用nvidia-smi
这个指令的输出的话,是没有办法非常细致的分析程序运行过程中的变化的。这里顺便推荐一个比较精致的跟nvidia-smi
用法非常类似的小工具:gpustat。这个工具可以直接使用pip进行安装和管理:
$ python3 -m pip install gpustat
Collecting gpustat
Downloading gpustat-0.6.0.tar.gz (78 kB)
|████████████████████████████████| 78 kB 686 kB/s
Requirement already satisfied: six>=1.7 in /home/dechin/.local/lib/python3.8/site-packages (from gpustat) (1.16.0)
Collecting nvidia-ml-py3>=7.352.0
Downloading nvidia-ml-py3-7.352.0.tar.gz (19 kB)
Requirement already satisfied: psutil in /home/dechin/.local/lib/python3.8/site-packages (from gpustat) (5.8.0)
Collecting blessings>=1.6
Downloading blessings-1.7-py3-none-any.whl (18 kB)
Building wheels for collected packages: gpustat, nvidia-ml-py3
Building wheel for gpustat (setup.py) ... done
Created wheel for gpustat: filename=gpustat-0.6.0-py3-none-any.whl size=12617 sha256=4158e741b609c7a1bc6db07d76224db51cd7656a6f2e146e0b81185ce4e960ba
Stored in directory: /home/dechin/.cache/pip/wheels/0d/d9/80/b6cbcdc9946c7b50ce35441cc9e7d8c5a9d066469ba99bae44
Building wheel for nvidia-ml-py3 (setup.py) ... done
Created wheel for nvidia-ml-py3: filename=nvidia_ml_py3-7.352.0-py3-none-any.whl size=19191 sha256=70cd8ffc92286944ad9f5dc4053709af76fc0e79928dc61b98a9819a719f1e31
Stored in directory: /home/dechin/.cache/pip/wheels/b9/b1/68/cb4feab29709d4155310d29a421389665dcab9eb3b679b527b
Successfully built gpustat nvidia-ml-py3
Installing collected packages: nvidia-ml-py3, blessings, gpustat
Successfully installed blessings-1.7 gpustat-0.6.0 nvidia-ml-py3-7.352.0
使用的时候也是跟nvidia-smi非常类似的操作:
$ watch --color -n1 gpustat -cpu
返回结果如下所示:
Every 1.0s: gpustat -cpu ubuntu2004: Wed Jan 12 15:58:59 2022
ubuntu2004 Wed Jan 12 15:58:59 2022 470.42.01
[0] Quadro RTX 4000 | 39'C, 3 % | 537 / 7979 MB | root:Xorg/1643(412M) de
chin:gnome-shell/2940(75M) dechin:slack/47102(35M) dechin:chrome/172424(11M)
[1] Quadro RTX 4000 | 32'C, 0 % | 6 / 7982 MB | root:Xorg/1643(4M)
通过gpustat
返回的结果,包含了GPU的型号、使用率和显存使用大小和GPU当前的温度等常规信息。
py3nvml的安装与使用
接下来正式看下py3nvml的安装和使用方法,这是一个可以在python中实时查看和监测GPU信息的一个库,可以通过pip来安装和管理:
$ python3 -m pip install py3nvml
Collecting py3nvml
Downloading py3nvml-0.2.7-py3-none-any.whl (55 kB)
|████████████████████████████████| 55 kB 650 kB/s
Requirement already satisfied: xmltodict in /home/dechin/anaconda3/lib/python3.8/site-packages (from py3nvml) (0.12.0)
Installing collected packages: py3nvml
Successfully installed py3nvml-0.2.7
py3nvml绑定GPU卡
有一些框架为了性能的最大化,在初始化的时候就会默认去使用到整个资源池里面的所有GPU卡,比如如下使用Jax来演示的一个案例:
In [1]: import py3nvml
In [2]: from jax import numpy as jnp
In [3]: x = jnp.ones(1000000000)
In [4]: !nvidia-smi
Wed Jan 12 16:08:32 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.42.01 Driver Version: 470.42.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Quadro RTX 4000 On | 00000000:03:00.0 On | N/A |
| 30% 41C P0 38W / 125W | 7245MiB / 7979MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Quadro RTX 4000 On | 00000000:A6:00.0 Off | N/A |
| 30% 35C P0 35W / 125W | 101MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1643 G /usr/lib/xorg/Xorg 412MiB |
| 0 N/A N/A 2940 G /usr/bin/gnome-shell 75MiB |
| 0 N/A N/A 47102 G ...AAAAAAAAA= --shared-files 35MiB |
| 0 N/A N/A 172424 G ...AAAAAAAAA= --shared-files 11MiB |
| 0 N/A N/A 812125 C /usr/local/bin/python 6705MiB |
| 1 N/A N/A 1643 G /usr/lib/xorg/Xorg 4MiB |
| 1 N/A N/A 812125 C /usr/local/bin/python 93MiB |
+-----------------------------------------------------------------------------+
在这个案例中我们只是在显存中分配了一块空间用于存储一个向量,但是Jax在初始化之后,自动占据了本地的2张GPU卡。根据Jax官方提供的方法,我们可以使用如下的操作配置环境变量,使得Jax只能看到其中的1张卡,这样就不会扩张:
In [1]: import os
In [2]: os.environ["CUDA_VISIBLE_DEVICES"] = "1"
In [3]: from jax import numpy as jnp
In [4]: x = jnp.ones(1000000000)
In [5]: !nvidia-smi
Wed Jan 12 16:10:36 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.42.01 Driver Version: 470.42.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Quadro RTX 4000 On | 00000000:03:00.0 On | N/A |
| 30% 40C P8 19W / 125W | 537MiB / 7979MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Quadro RTX 4000 On | 00000000:A6:00.0 Off | N/A |
| 30% 35C P0 35W / 125W | 7195MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1643 G /usr/lib/xorg/Xorg 412MiB |
| 0 N/A N/A 2940 G /usr/bin/gnome-shell 75MiB |
| 0 N/A N/A 47102 G ...AAAAAAAAA= --shared-files 35MiB |
| 0 N/A N/A 172424 G ...AAAAAAAAA= --shared-files 11MiB |
| 1 N/A N/A 1643 G /usr/lib/xorg/Xorg 4MiB |
| 1 N/A N/A 813030 C /usr/local/bin/python 7187MiB |
+-----------------------------------------------------------------------------+
可以看到结果中已经是只使用了1张GPU卡,达到了我们的目的,但是这种通过配置环境变量来实现的功能还是着实不够pythonic,因此py3nvml中也提供了这样的功能,可以指定某一系列的GPU卡用于执行任务:
In [1]: import py3nvml
In [2]: from jax import numpy as jnp
In [3]: py3nvml.grab_gpus(num_gpus=1,gpu_select=[1])
Out[3]: 1
In [4]: x = jnp.ones(1000000000)
In [5]: !nvidia-smi
Wed Jan 12 16:12:37 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.42.01 Driver Version: 470.42.01 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Quadro RTX 4000 On | 00000000:03:00.0 On | N/A |
| 30% 40C P8 20W / 125W | 537MiB / 7979MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
| 1 Quadro RTX 4000 On | 00000000:A6:00.0 Off | N/A |
| 30% 36C P0 35W / 125W | 7195MiB / 7982MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 1643 G /usr/lib/xorg/Xorg 412MiB |
| 0 N/A N/A 2940 G /usr/bin/gnome-shell 75MiB |
| 0 N/A N/A 47102 G ...AAAAAAAAA= --shared-files 35MiB |
| 0 N/A N/A 172424 G ...AAAAAAAAA= --shared-files 11MiB |
| 1 N/A N/A 1643 G /usr/lib/xorg/Xorg 4MiB |
| 1 N/A N/A 814673 C /usr/local/bin/python 7187MiB |
+-----------------------------------------------------------------------------+
可以看到结果中也是只使用了1张GPU卡,达到了跟上一步的操作一样的效果。
查看空闲GPU
对于环境中可用的GPU,py3nvml的判断标准就是在这个GPU上已经没有任何的进程,那么这个就是一张可用的GPU卡:
In [1]: import py3nvml
In [2]: free_gpus = py3nvml.get_free_gpus()
In [3]: free_gpus
Out[3]: [True, True]
当然这里需要说明的是,系统应用在这里不会被识别,应该是会判断守护进程。
命令行信息获取
跟nvidia-smi
非常类似的,py3nvml也可以在命令行中通过调用py3smi
来使用。值得一提的是,如果需要用nvidia-smi
来实时的监测GPU的使用信息,往往是需要配合watch -n
来使用的,但是如果是py3smi
则不需要,直接用py3smi -l
就可以实现类似的功能。
$ py3smi -l 5
Wed Jan 12 16:17:37 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI Driver Version: 470.42.01 |
+---------------------------------+---------------------+---------------------+
| GPU Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
+=================================+=====================+=====================+
| 0 30% 39C 8 19W / 125W | 537MiB / 7979MiB | 0% Default |
| 1 30% 33C 8 7W / 125W | 6MiB / 7982MiB | 0% Default |
+---------------------------------+---------------------+---------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU Owner PID Uptime Process Name Usage |
+=============================================================================+
+-----------------------------------------------------------------------------+
可以看到略有区别的是,这里并不像nvidia-smi
列出来的进程那么多,应该是自动忽略了系统进程。
单独查看驱动版本和显卡型号
在py3nvml中把查看驱动和型号的功能单独列了出来:
In [1]: from py3nvml.py3nvml import *
In [2]: nvmlInit()
Out[2]: <CDLL 'libnvidia-ml.so.1', handle 560ad4d07a60 at 0x7fd13aa52340>
In [3]: print("Driver Version: {}".format(nvmlSystemGetDriverVersion()))
Driver Version: 470.42.01
In [4]: deviceCount = nvmlDeviceGetCount()
...: for i in range(deviceCount):
...: handle = nvmlDeviceGetHandleByIndex(i)
...: print("Device {}: {}".format(i, nvmlDeviceGetName(handle)))
...:
Device 0: Quadro RTX 4000
Device 1: Quadro RTX 4000
In [5]: nvmlShutdown()
这样也不需要我们自己再去逐个的筛选,从灵活性和可扩展性上来说还是比较方便的。
单独查看显存信息
这里同样的也是把显存的使用信息单独列了出来,不需要用户再去单独筛选这个信息,相对而言比较细致:
In [1]: from py3nvml.py3nvml import *
In [2]: nvmlInit()
Out[2]: <CDLL 'libnvidia-ml.so.1', handle 55ae42aadd90 at 0x7f39c700e040>
In [3]: handle = nvmlDeviceGetHandleByIndex(0)
In [4]: info = nvmlDeviceGetMemoryInfo(handle)
In [5]: print("Total memory: {}MiB".format(info.total >> 20))
Total memory: 7979MiB
In [6]: print("Free memory: {}MiB".format(info.free >> 20))
Free memory: 7441MiB
In [7]: print("Used memory: {}MiB".format(info.used >> 20))
Used memory: 537MiB
如果把这些代码插入到程序中,就可以获悉每一步所占用的显存的变化。
总结概要
在深度学习或者其他类型的GPU运算过程中,对于GPU信息的监测也是一个非常常用的功能。如果仅仅是使用系统级的GPU监测工具,就没办法非常细致的去跟踪每一步的显存和使用率的变化。如果是用profiler,又显得过于细致,而且环境配置、信息输出和筛选并不是很方便。此时就可以考虑使用py3nvml这样的工具,针对于GPU任务执行的过程进行细化的分析,有助于提升GPU的利用率和程序执行的性能。
版权声明
本文首发链接为:https://www.cnblogs.com/dechinphy/p/py3nvml.html
作者ID:DechinPhy
更多原著文章请参考:https://www.cnblogs.com/dechinphy/
打赏专用链接:https://www.cnblogs.com/dechinphy/gallery/image/379634.html
腾讯云专栏同步:https://cloud.tencent.com/developer/column/91958
参考链接
py3nvml实现GPU相关信息读取的更多相关文章
- CentOS查看显卡及GPU相关信息
lspci | grep -i vga 这样就可以显示机器上的显卡信息,比如 [root@localhost conf]# lspci | grep -i vga01:00.0 VGA compat ...
- Android根据文件路径使用File类获取文件相关信息
Android通过文件路径如何得到文件相关信息,如 文件名称,文件大小,创建时间,文件的相对路径,文件的绝对路径等: 如图: 代码: public class MainActivity extends ...
- node-webkit教程(13)gpu支持信息查看
node-webkit教程(13)gpu支持信息查看 文/玄魂 目录 node-webkit教程(13)gpu支持信息查看 前言 13.1操作步骤 (一)打开node-webkit,输入chrome: ...
- 『Python』 爬取 WooYun 论坛所有漏洞条目的相关信息
每个漏洞条目包含: 乌云ID,漏洞标题,漏洞所属厂商,白帽子,漏洞类型,厂商或平台给的Rank值 主要是做数据分析使用:可以分析某厂商的各类型漏洞的统计:或者对白帽子的能力进行分析..... 数据更新 ...
- 【爬虫问题】爬取tv.sohu.com的页面, 提取视频相关信息
尝试解决下面的问题 问题: 爬取tv.sohu.com的页面, 提取视频相关信息,不可用爬虫框架完成 何为视频i关信息?属性有哪些? 需求: 做到最大可能的页面覆盖率 *使用httpClient 模拟 ...
- stat(),lstat(),fstat() 获取文件/目录的相关信息
stat 的使用 Linux有个命令,ls -l,效果如下: 这个命令能显示文件的类型.操作权限.硬链接数量.属主.所属组.大小.修改时间.文件名.它是怎么获得这些信息的呢,请看下面的讲解. stat ...
- 总结描述用户和组管理类命令的使用方法,系统用户相关信息,取出主机IP地址
1.列出当前系统上所有已经登录的用户的用户名,注意:同一个用户登录多次,则只显示一次即可. [root@db146 ~]# who|cut -f1 -d' ' |sort -u root 2.取出最后 ...
- 编程实战——电影管理器之利用MediaInfo获取高清视频文件的相关信息
随着高速(20M)宽带.HTPC.大容量硬盘(3T)的普及,下载高清片并利用大屏幕观看也成为普通的事情. 随着下载影片的增多,管理就有了问题,有时在茫茫文件夹下找寻一个影片也是一件费时费力的事. 于是 ...
- android--------根据文件路径使用File类获取文件相关信息
Android通过文件路径如何得到文件相关信息,如 文件名称,文件大小,创建时间,文件的相对路径,文件的绝对路径等. 如图: public class MainActivity extends Act ...
随机推荐
- 02-多任务-thread
多任务-Thread 一.理解并行与并发 并行:cpu数多于任务数 例如: 一共有三个任务,分别是:QQ.微信.陌陌:一共有四个CPU,每个任务占据一个CPU. 并发:CPU数少于任务数 例如: 一共 ...
- 转:Java多线程基础问题
如果你即将去一家从事大型系统研发的公司进行Java面试,不可避免的会有多线程相关的问题.下面是一些针对初学者或者新手的问题,如果你已经具备良好的基础,那么你可以跳过本文,直接尝试针对进阶水平的Java ...
- ffmpeg 系列博客
https://www.ffmpeg.org/download.html#build-macffmpeg 系列博文https://me.csdn.net/blog/leixiaohua1020http ...
- MimeMessageHelper代码发邮件时,通过客服端登陆到邮箱,在已发送邮件里没有已经通过代码发送的邮件
MimeMessageHelper代码发邮件时,通过客服端登陆到邮箱,在已发送邮件里没有已经通过代码发送的邮件, 这个问题很奇怪,这样的话不能看到通过代码发送的邮件历史记录,所以只好借助秘密抄送了,抄 ...
- 大型网站高可用架构之CAP原理
在讨论高可用数据服务架构之前,必须先讨论的一个话题是,为了保证数据的高可用,网站通常会牺牲另一个也很重要的指标:数据一致性. CAP原理认为,一个提供数据服务的存储系统无法同时满足数据一致性.数据可用 ...
- 【LeetCode】119. 杨辉三角 II Pascal‘s Triangle II(Python & Java)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题思路 方法一: 空间复杂度 O ( k ∗ ( k + 1 ...
- 【LeetCode】342. Power of Four 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 迭代 位运算 函数法 日期 [LeetCode ...
- 【LeetCode】1001. Grid Illumination 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 哈希 日期 题目地址:https://leetcod ...
- 【LeetCode】678. Valid Parenthesis String 解题报告(Python)
[LeetCode]678. Valid Parenthesis String 解题报告(Python) 标签(空格分隔): LeetCode 作者: 负雪明烛 id: fuxuemingzhu 个人 ...
- 【LeetCode】806. Number of Lines To Write String 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 使用ASIIC码求长度 使用字典保存长度 日期 题目 ...