原文地址 ?传送门
对于回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价。这里,我们先介绍最常用的3个:

平均绝对误差(MAE)
就是绝对误差的平均值,它的计算公式如下:

M

A

E

(

y

,

y

^

)

=

1

n

(

i

=

1

n

y

y

^

)

MAE(y,\hat{y}) = \frac{1}{n}(\sum_{i = 1}^{n}\left | y - \hat{y} \right |)

MAE(y,y^​)=n1​(i=1∑n​∣y−y^​∣)
其中,

y

i

y_{i}

yi​ 表示真实值,

y

^

i

\hat y_{i}

y^​i​ 表示预测值,

n

n

n 则表示值的个数。MAE 的值越小,说明预测模型拥有更好的精确度。我们可以尝试使用 Python 实现 MAE 计算函数:

  1. import numpy as np
  2. def mae_value(y_true, y_pred):
  3. """
  4. 参数:
  5. y_true -- 测试集目标真实值
  6. y_pred -- 测试集目标预测值
  7. 返回:
  8. mae -- MAE 评价指标
  9. """
  10. n = len(y_true)
  11. mae = sum(np.abs(y_true - y_pred))/n
  12. return mae

均方误差(MSE)
它表示误差的平方的期望值,它的计算公式如下:

M

S

E

(

y

,

y

^

)

=

1

n

i

=

1

n

(

y

i

y

^

)

2

{MSE}(y, \hat{y} ) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^{2}

MSE(y,y^​)=n1​i=1∑n​(yi​−y^​)2

其中,

y

i

y_{i}

yi​ 表示真实值,

y

^

i

\hat y_{i}

y^​i​ 表示预测值,

n

n

n 则表示值的个数。MSE 的值越小,说明预测模型拥有更好的精确度。同样,我们可以尝试使用 Python 实现 MSE 计算函数:

  1. import numpy as np
  2. def mse_value(y_true, y_pred):
  3. """
  4. 参数:
  5. y_true -- 测试集目标真实值
  6. y_pred -- 测试集目标预测值
  7. 返回:
  8. mse -- MSE 评价指标
  9. """
  10. n = len(y_true)
  11. mse = sum(np.square(y_true - y_pred))/n
  12. return mse

平均绝对百分比误差

M

A

P

E

MAPE

MAPE

M

A

P

E

MAPE

MAPE 是

M

A

D

MAD

MAD 的变形,它是一个百分比值,因此比其他统计量更容易理解。例如,如果

M

A

P

E

MAPE

MAPE 为

5

5

5,则表示预测结果较真实结果平均偏离

5

5%

5。

M

A

P

E

MAPE

MAPE 的计算公式如下:

M

A

P

E

(

y

,

y

^

)

=

i

=

1

n

y

i

y

^

i

y

i

n

×

100

%

{MAPE}(y, \hat{y} ) = \frac{\sum_{i=1}^{n}{|\frac{y_{i}-\hat y_{i}}{y_{i}}|}}{n} \times 100{\%}

MAPE(y,y^​)=n∑i=1n​∣yi​yi​−y^​i​​∣​×100%

其中,

y

i

y_{i}

yi​ 表示真实值,

y

^

i

\hat y_{i}

y^​i​ 表示预测值,

n

n

n 则表示值的个数。

M

A

P

E

MAPE

MAPE 的值越小,说明预测模型拥有更好的精确度。使用 Python 实现 MSE 计算函数:

  1. import numpy as np
  2. def mape(y_true, y_pred):
  3. """
  4. 参数:
  5. y_true -- 测试集目标真实值
  6. y_pred -- 测试集目标预测值
  7. 返回:
  8. mape -- MAPE 评价指标
  9. """
  10. n = len(y_true)
  11. mape = sum(np.abs((y_true - y_pred)/y_true))/n*100
  12. return mape

参考

机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)的更多相关文章

  1. 机器学习|线性回归算法详解 (Python 语言描述)

    原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 ...

  2. 『无为则无心』Python序列 — 17、Python字符串操作常用API

    目录 1.字符串的查找 @1.find()方法 @2.index()方法 @3.rfind()和rindex()方法 @4.count()方法 2.字符串的修改 @1.replace()方法 @2.s ...

  3. 『无为则无心』Python基础 — 2、编译型语言和解释型语言的区别

    目录 1.什么是计算机语言 2.高级语言中的编译型语言和解释型语言 (1)编译型语言 (2)解释型语言 (3)编译型语言和解释型语言执行流程 3.知识扩展: 4.关于Python 1.什么是计算机语言 ...

  4. 『无为则无心』Python基础 — 3、搭建Python开发环境

    目录 1.Python开发环境介绍 2.Python解释器的分类 3.下载Python解释器 4.安装Python解释器 5.Python解释器验证 1.Python开发环境介绍 所谓"工欲 ...

  5. 『无为则无心』Python基础 — 4、Python代码常用调试工具

    目录 1.Python的交互模式 2.IDLE工具使用说明 3.Sublime3工具的安装与配置 (1)Sublime3的安装 (2)Sublime3的配置 4.使用Sublime编写并调试Pytho ...

  6. 『无为则无心』Python基础 — 5、Python开发工具的安装与使用

    目录 1.Pycharm下载 2.Pycharm安装 3.PyCharm界面介绍 4.基本使用 (1)新建Python项目 (2)编写Python代码 (3)执行代码查看结果 (4)设置PyCharm ...

  7. 『无为则无心』Python基础 — 6、Python的注释

    目录 1.注释的作用 2.注释的分类 单行注释 多行注释 3.注释的注意事项 4.什么时候需要使用注释 5.总结 提示:完成了前面的准备工作,之后的文章开始介绍Python的基本语法了. Python ...

  8. 『无为则无心』Python基础 — 7、Python的变量

    目录 1.变量的定义 2.Python变量说明 3.Python中定义变量 (1)定义语法 (2)标识符定义规则 (3)内置关键字 (4)标识符命名习惯 4.使用变量 1.变量的定义 程序中,数据都是 ...

  9. 『无为则无心』Python基础 — 8、Python中的数据类型(数值、布尔、字符串)

    目录 1.数据类型介绍 2.数值型(Number) 3.布尔型(bool) 4.None(空值) 5.常量 6.字符串(String) 1.数据类型介绍 (1)什么是数据类型 在生活中,我们日常使用的 ...

随机推荐

  1. 算法 A-Star(A星)寻路

    一.简介 在游戏中,有一个很常见地需求,就是要让一个角色从A点走向B点,我们期望是让角色走最少的路.嗯,大家可能会说,直线就是最短的.没错,但大多数时候,A到B中间都会出现一些角色无法穿越的东西,比如 ...

  2. 代码图形统计工具git_stats web

    目录 一.简介 二.安装ruby 三.配置git_stats 四.通过nginx把网页展示出来 一.简介 仓库代码统计工具之一,可以按git提交人.提交次数.修改文件数.代码行数.注释量在时间维度上进 ...

  3. [BUUCTF]REVERSE——CrackRTF

    CrackRTF 附件 步骤: 例行查壳儿,32位程序,无壳儿 32位ida载入,main函数开始分析程序 破解第一个密码 sub_40100A()是一个加密函数,具体的写的算法没去分析,但是Cryp ...

  4. Python利用ctypes实现C库函数调用

    0X00 ctypes 是强大的,使用它我们就能够调 用动态链接库中函数,同时创建各种复杂的 C 数据类型和底层操作函数.使得python也具备了底层内存操作的能力,再配合python本身强大的表达能 ...

  5. 分组依据(Project)

    <Project2016 企业项目管理实践>张会斌 董方好 编著 [视图]选项卡下,[筛选器]楼下,住着个[分组依据]. 这个功能,说白了,就是指定个"组",把同一组的 ...

  6. 深入浅出Mysql索引优化专题分享|面试怪圈

    文章纲要 该文章结合18张手绘图例,21个SQL经典案例.近10000字,将Mysql索引优化经验予以总结,你可以根据纲要来决定是否继续阅读,完成这篇文章大概需要25-30分钟,相信你的坚持是不负时光 ...

  7. LuoguB2034 计算 2 的幂 题解

    Content 给定整数 \(n\),求 \(2^n\). 数据范围:\(0\leqslant n<31\). Solution 第一种各位都能想得到的,直接循环 \(n\) 次,往答案里面乘以 ...

  8. Sort 多列正排序,倒排序

    linux sort 多列正排序,倒排序 转自https://segmentfault.com/a/1190000005713784  发布于 2016-06-14  sort是在Linux里非常常用 ...

  9. JAVA微信公众号网页开发——获取公众号关注的所有用户(微信公众号粉丝)

    package com.weixin.sendmessage; import org.apache.commons.lang.StringUtils; import org.apache.http.H ...

  10. mac学习Python第二天:开发工具安装、编程方式、中文编码、syntaxError语法错误、注释、语法格式

    一.python集成开发工具Visual Studio Code安装配置 1.官网下载安装VSCode 官网地址 https://code.visualstudio.com/下载软件包 VSCode ...