原文地址 ?传送门
对于回归预测结果,通常会有平均绝对误差、平均绝对百分比误差、均方误差等多个指标进行评价。这里,我们先介绍最常用的3个:

平均绝对误差(MAE)
就是绝对误差的平均值,它的计算公式如下:

M

A

E

(

y

,

y

^

)

=

1

n

(

i

=

1

n

y

y

^

)

MAE(y,\hat{y}) = \frac{1}{n}(\sum_{i = 1}^{n}\left | y - \hat{y} \right |)

MAE(y,y^​)=n1​(i=1∑n​∣y−y^​∣)
其中,

y

i

y_{i}

yi​ 表示真实值,

y

^

i

\hat y_{i}

y^​i​ 表示预测值,

n

n

n 则表示值的个数。MAE 的值越小,说明预测模型拥有更好的精确度。我们可以尝试使用 Python 实现 MAE 计算函数:

import numpy as np

def mae_value(y_true, y_pred):
"""
参数:
y_true -- 测试集目标真实值
y_pred -- 测试集目标预测值 返回:
mae -- MAE 评价指标
""" n = len(y_true)
mae = sum(np.abs(y_true - y_pred))/n
return mae

均方误差(MSE)
它表示误差的平方的期望值,它的计算公式如下:

M

S

E

(

y

,

y

^

)

=

1

n

i

=

1

n

(

y

i

y

^

)

2

{MSE}(y, \hat{y} ) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y})^{2}

MSE(y,y^​)=n1​i=1∑n​(yi​−y^​)2

其中,

y

i

y_{i}

yi​ 表示真实值,

y

^

i

\hat y_{i}

y^​i​ 表示预测值,

n

n

n 则表示值的个数。MSE 的值越小,说明预测模型拥有更好的精确度。同样,我们可以尝试使用 Python 实现 MSE 计算函数:

import numpy as np

def mse_value(y_true, y_pred):
"""
参数:
y_true -- 测试集目标真实值
y_pred -- 测试集目标预测值 返回:
mse -- MSE 评价指标
""" n = len(y_true)
mse = sum(np.square(y_true - y_pred))/n
return mse

平均绝对百分比误差

M

A

P

E

MAPE

MAPE

M

A

P

E

MAPE

MAPE 是

M

A

D

MAD

MAD 的变形,它是一个百分比值,因此比其他统计量更容易理解。例如,如果

M

A

P

E

MAPE

MAPE 为

5

5

5,则表示预测结果较真实结果平均偏离

5

5%

5。

M

A

P

E

MAPE

MAPE 的计算公式如下:

M

A

P

E

(

y

,

y

^

)

=

i

=

1

n

y

i

y

^

i

y

i

n

×

100

%

{MAPE}(y, \hat{y} ) = \frac{\sum_{i=1}^{n}{|\frac{y_{i}-\hat y_{i}}{y_{i}}|}}{n} \times 100{\%}

MAPE(y,y^​)=n∑i=1n​∣yi​yi​−y^​i​​∣​×100%

其中,

y

i

y_{i}

yi​ 表示真实值,

y

^

i

\hat y_{i}

y^​i​ 表示预测值,

n

n

n 则表示值的个数。

M

A

P

E

MAPE

MAPE 的值越小,说明预测模型拥有更好的精确度。使用 Python 实现 MSE 计算函数:

import numpy as np

def mape(y_true, y_pred):
"""
参数:
y_true -- 测试集目标真实值
y_pred -- 测试集目标预测值 返回:
mape -- MAPE 评价指标
""" n = len(y_true)
mape = sum(np.abs((y_true - y_pred)/y_true))/n*100
return mape

参考

机器学习|线性回归三大评价指标实现『MAE, MSE, MAPE』(Python语言描述)的更多相关文章

  1. 机器学习|线性回归算法详解 (Python 语言描述)

    原文地址 ? 传送门 线性回归 线性回归是一种较为简单,但十分重要的机器学习方法.掌握线性的原理及求解方法,是深入了解线性回归的基本要求.除此之外,线性回归也是监督学习回归部分的基石. 线性回归介绍 ...

  2. 『无为则无心』Python序列 — 17、Python字符串操作常用API

    目录 1.字符串的查找 @1.find()方法 @2.index()方法 @3.rfind()和rindex()方法 @4.count()方法 2.字符串的修改 @1.replace()方法 @2.s ...

  3. 『无为则无心』Python基础 — 2、编译型语言和解释型语言的区别

    目录 1.什么是计算机语言 2.高级语言中的编译型语言和解释型语言 (1)编译型语言 (2)解释型语言 (3)编译型语言和解释型语言执行流程 3.知识扩展: 4.关于Python 1.什么是计算机语言 ...

  4. 『无为则无心』Python基础 — 3、搭建Python开发环境

    目录 1.Python开发环境介绍 2.Python解释器的分类 3.下载Python解释器 4.安装Python解释器 5.Python解释器验证 1.Python开发环境介绍 所谓"工欲 ...

  5. 『无为则无心』Python基础 — 4、Python代码常用调试工具

    目录 1.Python的交互模式 2.IDLE工具使用说明 3.Sublime3工具的安装与配置 (1)Sublime3的安装 (2)Sublime3的配置 4.使用Sublime编写并调试Pytho ...

  6. 『无为则无心』Python基础 — 5、Python开发工具的安装与使用

    目录 1.Pycharm下载 2.Pycharm安装 3.PyCharm界面介绍 4.基本使用 (1)新建Python项目 (2)编写Python代码 (3)执行代码查看结果 (4)设置PyCharm ...

  7. 『无为则无心』Python基础 — 6、Python的注释

    目录 1.注释的作用 2.注释的分类 单行注释 多行注释 3.注释的注意事项 4.什么时候需要使用注释 5.总结 提示:完成了前面的准备工作,之后的文章开始介绍Python的基本语法了. Python ...

  8. 『无为则无心』Python基础 — 7、Python的变量

    目录 1.变量的定义 2.Python变量说明 3.Python中定义变量 (1)定义语法 (2)标识符定义规则 (3)内置关键字 (4)标识符命名习惯 4.使用变量 1.变量的定义 程序中,数据都是 ...

  9. 『无为则无心』Python基础 — 8、Python中的数据类型(数值、布尔、字符串)

    目录 1.数据类型介绍 2.数值型(Number) 3.布尔型(bool) 4.None(空值) 5.常量 6.字符串(String) 1.数据类型介绍 (1)什么是数据类型 在生活中,我们日常使用的 ...

随机推荐

  1. Elasticsearch核心技术(四):索引原理分析

    本文探讨Elasticsearch的数据请求.路由和写入过程的原理,主要涉及ES的分布式存储架构.节点和副本的写入过程.近实时搜索的原因.持久化机制等. 4.1 ES存储架构 我们经常说,看一件事情千 ...

  2. 转:Android控件属性

    Android功能强大,界面华丽,但是众多的布局属性就害苦了开发者,下面这篇文章结合了网上不少资料,花费本人一个下午搞出来的,希望对其他人有用. 第一类:属性值为true或false android: ...

  3. Django的Form表单验证

    Form(from django import forms) 简短理解:后端提供了一个类:from django import forms,继承此类定义子类.子类中定义和form表单中提交到name名 ...

  4. 什么是SEO配置

    SEO是什么 搜索引擎优化,又称为SEO,即Search Engine Optimization,它是一种通过分析搜索引擎的排名规律,了解各种搜索引擎怎样进行搜索.怎样抓取互联网页面.怎样确定特定关键 ...

  5. 利用免费二维码API自动生成网址图片二维码

    调用第三方接口生成二维码 官方地址:http://goqr.me/api/ 示例 https://api.qrserver.com/v1/create-qr-code/?size=180x180&am ...

  6. nim_duilib(9)之RichEdit

    introduction 更多控件用法,请参考 here 和 源码. 本文的代码基于这里 RichEdit的更多用法,请参考源码中RichEdit.h提供的函数,RichEdit控件,可以定制为多种多 ...

  7. 【九度OJ】题目1192:回文字符串 解题报告

    [九度OJ]题目1192:回文字符串 解题报告 标签(空格分隔): 九度OJ http://ac.jobdu.com/problem.php?pid=1192 题目描述: 给出一个长度不超过1000的 ...

  8. 【LeetCode】896. Monotonic Array 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...

  9. eclipse的安装及最大子数组求和

    我安装的是eclipse.由于eclipse是一个基于Java的课扩展开发平台,所以在安装eclipse之前要先安装Java的开发工具JDK(Java Devolopment Dit),且安装JDK需 ...

  10. Adversarial Training with Rectified Rejection

    目录 概 主要内容 rejection 实际使用 代码 Pang T., Zhang H., He D., Dong Y., Su H., Chen W., Zhu J., Liu T. Advers ...