正题

题目链接:https://www.luogu.com.cn/problem/P7324


题目大意

给一个只包含\(m\)个值的表达式,\(<\)表前后取最小值,\(>\)表前后取最大,\(?\)可以是小于也可以是大于。

然后\(n\)次给出这\(m\)个值,所有方案下表达式取值的和。输出这\(n\)次答案的和。

\(1\leq n\leq 5\times 10^4,1\leq m\leq 10,1\leq |S|\leq 5\times 10^4\)


解题思路

有括号所以先把表达树建出来,考虑到\(m\)很小,应该和状压有点关系。暴力的做法是直接做\(n\)次,时间复杂度是\(O(nm|S|)\)显然过不了。

因为取值只有\(m\)个,考虑把所有的信息压缩起来。实际上我们需要的信息就只有\(m\)个数之间的大小顺序,这样的状态数是\(m!\)个,要搞起来时间复杂度最快是\(O(m!|S|)\)也过不了。

但是对于一个数字来说我们就只需啊哟考虑它和其他数字的大小关系,状态数是\(2^m\)。设\(f_{x,s,0/1}\)表示到节点\(x\)时,小于数字\(x\)的值状态是\(s\)时到该节点的数字小于/大于数字\(x\)的方案数。

然后对于每个\(s\)跑出来一个答案,然后按照这个后面就很好做了。

时间复杂度\(O(2^m|S|+nm\log n)\)


code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define ll long long
using namespace std;
const ll N=1e5+10,P=1e9+7;
ll n,m,k,cnt,L,ans,a[10][N],p[10],rev[N];
ll ls[N],rs[N],f[N][2],z[N],c[N];
char s[N];stack<ll> st;
ll Build(ll l,ll r){
if(l==r){++cnt;c[cnt]=s[l]-'0';return cnt;}
if(rev[r]==l)return Build(l+1,r-1);
ll x=++cnt;
if(rev[r]){
ls[x]=Build(l,rev[r]-2);
rs[x]=Build(rev[r]+1,r-1);
c[x]=s[rev[r]-1];
}
else{
ls[x]=Build(l,r-2);
rs[x]=Build(r,r);
c[x]=s[r-1];
}
return x;
}
void dfs(ll x,ll s){
f[x][0]=f[x][1]=0;
if(c[x]<10){
f[x][!(s&(1<<c[x]))]=1;
return;
}
dfs(ls[x],s);dfs(rs[x],s);
if(c[x]!='>'){
for(ll i=0;i<2;i++)
for(ll j=0;j<2;j++)
(f[x][min(i,j)]+=f[ls[x]][i]*f[rs[x]][j]%P)%=P;
}
if(c[x]!='<'){
for(ll i=0;i<2;i++)
for(ll j=0;j<2;j++)
(f[x][max(i,j)]+=f[ls[x]][i]*f[rs[x]][j]%P)%=P;
}
return;
}
bool cmp(ll x,ll y)
{return a[x][k]<a[y][k];}
signed main()
{
scanf("%lld%lld",&n,&m);
for(ll i=0;i<m;i++)
for(ll j=1;j<=n;j++)
scanf("%lld",&a[i][j]);
scanf("%s",s+1);L=strlen(s+1);
for(ll i=1;i<=L;i++){
if(s[i]=='(')st.push(i);
else if(s[i]==')'){
ll x=st.top();
rev[x]=i;rev[i]=x;
st.pop();
}
}
Build(1,L);
ll MS=(1<<m);
for(ll i=0;i<MS;i++)
dfs(1,i),z[i]=f[1][1];
for(k=1;k<=n;k++){
for(ll i=0;i<m;i++)p[i]=i;
sort(p,p+m,cmp);
(ans+=z[0]*a[p[0]][k]%P)%=P;
ll S=0;
for(ll i=1;i<m;i++){
S|=(1<<p[i-1]);
(ans+=z[S]*(a[p[i]][k]-a[p[i-1]][k])%P)%=P;
}
}
printf("%lld\n",(ans+P)%P);
return 0;
}

P7324-[WC2021]表达式求值【dp】的更多相关文章

  1. P7324 [WC2021] 表达式求值

    P7324 [WC2021] 表达式求值 闲话 WC2021 我只得了 20 分,三道题总共 20 分.我是下场了突然后知后觉这件事的,主要原因是我开了 C++11,然后 T1 T2 都没分了.在洛谷 ...

  2. 洛谷 P7324 - [WC2021] 表达式求值(状压+dp)

    题面传送门 现场人傻系列-- 首先建出 \(E\) 的表达式树,具体来说表达式的每一个叶子节点表示一个数组 \(A_i\),每一个非叶子节点都表示一次运算,它的值表示左右儿子进行该运算后得到的结果.这 ...

  3. [WC2021] 表达式求值

    考虑我们显然可以对每位分开求解,考虑求出最终答案是\(A_i\)的方案数. 那么我们发现我们这样\(dp\)的话,显然不太行! 会有一个\(i\)的复杂度 但是如果我们做大于等于的话,就只用一遍\(d ...

  4. 表达式求值(noip2015等价表达式)

    题目大意 给一个含字母a的表达式,求n个选项中表达式跟一开始那个等价的有哪些 做法 模拟一个多项式显然难以实现那么我们高兴的找一些素数代入表达式,再随便找一个素数做模表达式求值优先级表 - ( ) + ...

  5. 用Python3实现表达式求值

    一.题目描述 请用 python3 编写一个计算器的控制台程序,支持加减乘除.乘方.括号.小数点,运算符优先级为括号>乘方>乘除>加减,同级别运算按照从左向右的顺序计算. 二.输入描 ...

  6. 数据结构算法C语言实现(八)--- 3.2栈的应用举例:迷宫求解与表达式求值

    一.简介 迷宫求解:类似图的DFS.具体的算法思路可以参考书上的50.51页,不过书上只说了粗略的算法,实现起来还是有很多细节需要注意.大多数只是给了个抽象的名字,甚至参数类型,返回值也没说的很清楚, ...

  7. nyoj305_表达式求值

    表达式求值 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 Dr.Kong设计的机器人卡多掌握了加减法运算以后,最近又学会了一些简单的函数求值,比如,它知道函数min ...

  8. 利用栈实现算术表达式求值(Java语言描述)

    利用栈实现算术表达式求值(Java语言描述) 算术表达式求值是栈的典型应用,自己写栈,实现Java栈算术表达式求值,涉及栈,编译原理方面的知识.声明:部分代码参考自茫茫大海的专栏. 链栈的实现: pa ...

  9. 数据结构--栈的应用(表达式求值 nyoj 35)

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=35 题目: 表达式求值 时间限制:3000 ms | 内存限制:65535 KB描述 AC ...

  10. NOIP2013普及组 T2 表达式求值

    OJ地址:洛谷P1981 CODEVS 3292 正常写法是用栈 #include<iostream> #include<algorithm> #include<cmat ...

随机推荐

  1. [ASP.NET MVC]@Scripts.Render、@Styles.Render的使用

    一.配置BundleConfig.cs文件 1.首先要在App_Start 里面BundleConfig.cs 文件里面 添加要包含的css文件 2.BundleConfig就是一个微软新加的 一个打 ...

  2. [SWMM]软件启动不了,出现 “ RPC服务器不可用 ” 错误

    [问题]打开SWMM5.1软件时,初选"RPC服务器不可用"的错误 [解决]计算机管理--服务 设置Print Spooler服务状态为启动,并设置为自启动.

  3. hive -- 外部表、内部表、临时表

    1.外部表 关键字:EXTERNAL 外部表创建时需要指定LOCATION 删除外部表时,数据不被删除 CREATE EXTERNAL TABLE page_view(viewTime INT, us ...

  4. vue-bluJavascript - Vue - 插件(swiper、vue-preview)

    swiper swiper是一个支持滑动效果的js插件,它也支持在vue中使用,主要用于移动端的触摸滑动操作.Swiper中文网. 安装和导入插件 npm i vue-awesome-swiper - ...

  5. JavaWeb学习总结—Session

    转载自:https://www.cnblogs.com/xdp-gacl/p/3855702.html 一.Session简单介绍 在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(sess ...

  6. -e $request_filename + nginx内置变量

    -e表示只要filename存在,则为真,不管filename是什么类型,当然这里加了!就取反额外的一些-e filename 如果 filename存在,则为真-d filename 如果 file ...

  7. 使用Visual Studio分析dump

    最近系统是不是CPU会飙升的百分之九十多甚至百分百,在本地又很难复现问题,无法定位问题出现在哪. 可以用转储文件来保存现场,然后通过分析dump文件可以大概分析出问题的所在 生成转存文件 在CPU飙升 ...

  8. redis 《scan命令》

    此命令十分奇特建议参考文档:http://redisdoc.com/database/scan.html#scan     222222222222222并非每次迭代都要使用相同的 COUNT 值. ...

  9. Ajax的GET,POST方法传输数据和接收返回数据

    //首先创建一个Ajax对象 function ajaxFunction(){ var xmlHttp; try{ // Firefox, Opera 8.0+, Safari xmlHttp=new ...

  10. Python - 面向对象编程 - MRO 方法搜索顺序

    为什么会讲 MRO? 在讲多继承的时候:https://www.cnblogs.com/poloyy/p/15224912.html 有讲到, 当继承的多个父类拥有同名属性.方法,子类对象调用该属性. ...