Caffe框架GPU与MLU计算结果不一致请问如何调试?
Caffe框架GPU与MLU计算结果不一致请问如何调试?
某一检测模型移植到Cambricon Caffe上时,发现无法检测出结果,于是将GPU和MLU的运行结果输出并保存后进行对比,发现二者计算结果不一致,如下图所示:
第一张为GPU模式下,第二张为GPU模式,二者使用的输入和数据预处理方式均完全一样,该输出为网络第一层卷积的部分输出。
用Cambricon Caffe提供的test_forward工具验证该模型在CPU和MLU模式下的输入,结果仍不一致,如下图所示:
第一张为MLU模式下的输出,第二张CPU模式下的输出。
请问这种情况下如何调试具体哪里出现了问题?
在GPU模式下ROIPooling层的输出结果为:
在MLU模式下运行,结果为:
最后在CPU模式下使用ROIPooling算子,计算结果为:
对比CPU和GPU的运算结果可知,仅处理了第一个ROI,修改了ROIPooling层部分代码才能得到正确结果。而MLU模式下的ROIPooling层的结果是完全错误的。
首先在GPU上使网络输出Proposal层的运算结果,如下:
使用Proposal算子在CPU模式下运行的结果为:
MLU模式下的结果为:
将Proposal层替换为Python的Proposal层,在CPU模式下的运算结果为:
与GPU计算结果是一致的,所以认为Proposal算子有问题。
MLU100上的数据格式为FP16/INT8, 运算结果不一致是合理的,具体正确性要看误差,可以用MAPE度量一下误差,一般FP16不会超过%1。另外如果是faster-rcnn网络,不要直接比较proposal层之后的结果,只能直接比较proposal层前的结果。proposal层之后的结果因为涉及到bbox,无法直接比较,可以用IOU之类的方法比较。最后MLUfaster-rcnn的输出结果layout和CPU的输出结果layout不同,因此两者的后处理方式是不一致的,具体可以参考我司提供的后处理示例。
重新对比了一下GPU与MLU的输出结果,Proposal层之前的处理结果是正确的,但是MLU的Proposal和ROIPooling层有问题。在输入特征相同的情况下,使用FasterRCNN的Proposal层和MLU的Proposal层得到的结果是不一致的;使用FasterRCNN的Proposal层得到正确的ROI后,输入到ROIPooling层只处理了第一个ROI,我修改了CPU版本的ROIPooling层才可以得到正确的结果。
MLU100上的数据格式为FP16/INT8, 运算结果不一致是合理的,具体正确性要看误差,可以用MAPE度量一下误差,一般FP16不会超过%1。另外如果是faster-rcnn网络,不要直接比较proposal层之后的结果,只能直接比较proposal层前的结果。proposal层之后的结果因为涉及到bbox,无法直接比较,可以用IOU之类的方法比较。最后MLUfaster-rcnn的输出结果layout和CPU的输出结果layout不同,因此两者的后处理方式是不一致的,具体可以参考我司提供的后处理示例。
Caffe框架GPU与MLU计算结果不一致请问如何调试?的更多相关文章
- 人工智能深度学习Caffe框架介绍,优秀的深度学习架构
人工智能深度学习Caffe框架介绍,优秀的深度学习架构 在深度学习领域,Caffe框架是人们无法绕过的一座山.这不仅是因为它无论在结构.性能上,还是在代码质量上,都称得上一款十分出色的开源框架.更重要 ...
- Caffe框架下的图像回归测试
Caffe框架下的图像回归测试 参考资料: 1. http://stackoverflow.com/questions/33766689/caffe-hdf5-pre-processing 2. ht ...
- Caffe框架,了解三个文件
不知道从什么时候开始,Deep Learning成为了各个领域研究的热点,也不知道从什么时候开始,2015CVPR的文章出现了很多Deep Learning的文章,更不知道从什么时候开始,三维重建各个 ...
- Caffe使用step by step:caffe框架下的基本操作和分析
caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需 ...
- 安装caffe框架所需文件
安装caffe框架所需文件: 1.微软提供的快速卷积神经网络框架caffe-master安装包或者windows提供的caffe-windows安装包. 链接:http://pan.baidu.com ...
- caffe框架下目标检测——faster-rcnn实战篇操作
原有模型 1.下载fasrer-rcnn源代码并安装 git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git 1) ...
- 转 Yolov3转化Caffe框架详解
转自https://blog.csdn.net/watermelon1123/article/details/82083522 前些日子因工程需求,需要将yolov3从基于darknet转化为基于Ca ...
- 【神经网络与深度学习】Caffe使用step by step:caffe框架下的基本操作和分析
caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需 ...
- Caffe框架,图像数据转换成LMDB数据格式
小码农最近在研究深度学习,对所学知识做点记录,以供以后翻阅.在Caffe框架中,数据的格式都是LMDB的,如何将图像数据转换成这个格式呢? 首先,将图像数据和标签生成txt文档,执行一下代码: fin ...
随机推荐
- 菜鸟教程jsonp基础知识讲解
jsonp是什么? Jsonp(JSON with Padding) 是 json 的一种"使用模式",可以让网页从别的域名(网站)那获取资料,即跨域读取数据. 为什么我们从不同的 ...
- 【golang】golang中结构体的初始化方法(new方法)
准备工作: 定义结构体:Student import ( "fmt" "reflect") type Student struct { StudentId st ...
- 织梦DedeCMS自定义表单限制IP24小时只能提交多少次
方法1.打开plus/diy.php,找到一下代码, if(!is_array($diyform)) { showmsg('自定义表单不存在', '-1'); exit(); } 然后再在以下代码后面 ...
- KMP中next数组的理解
next数组是KMP的核心,但对于next数组我们总是有时候感觉明白了,但有时候又感觉没明白,现在我就说下我自己对KMP中next数组的理解,首先next[i]上的数字的意义,next[i]表示的是当 ...
- Android内核模块编译执行
Author: GeneBlue 0X01 前言 内核驱动是漏洞的高发区,了解Android驱动代码的编写是分析.利用驱动漏洞的基础.本文以一个"hello"驱动为例,简单介绍内核 ...
- YII框架的自定义布局(嵌套式布局,版本是1.1.20)
0x01 创建控制器 0x02 创建文件夹,之后创建视图文件 0x03 浏览器访问cxy/index控制器,验证 以上就是使用默认的布局,非常简单,那么如果我不想用YII框架默认的布局呢,我想用自定义 ...
- Windows Pe 第三章 PE头文件(下)
3.5 数据结构字段详解 3.5.1 PE头IMAGE_NT_HEADER的字段 1.IMAGE_NT_HEADER.Signature +0000h,双字.PE文件标识,被定义为00004550 ...
- Smss.exe加载win32k.sys过程总结
windows操作系统初始化 windows操作系统再初始化的过程中,当内核完全初始化而且各个组件也已经准备好后会加载一个个用户进程smss.exe(会话管理器),此进程会接着调用NtSetSyste ...
- MySQL数据迁移那些事儿
前言: 在平时工作中,经常会遇到数据迁移的需求,比如要迁移某个表.某个库或某个实例.根据不同的需求可能要采取不同的迁移方案,数据迁移过程中也可能会遇到各种大小问题.本篇文章,我们一起来看下 MySQL ...
- Java项目中每一个类都可以有一个main方法
Java项目中每一个类都可以有一个main方法,但只有一个main方法会被执行,其他main方法可以对类进行单元测试. public class StaticTest { public static ...