Recommenders with TensorRT
Recommenders with TensorRT
推荐系统用于向社交网络、媒体内容消费和电子商务平台的用户提供产品或媒体推荐。基于MLP的神经协作滤波器(NCF)推荐器使用一组完全连接或矩阵乘法层来生成推荐。 TensorRT推荐人示例的一些示例包括:
- Movie Recommendation Using Neural Collaborative Filter (NCF)
- Movie Recommendation Using MPS (Multi-Process Service)
- “Hello World” For Multilayer Perceptron (MLP)
3.1. Movie Recommendation Using Neural Collaborative Filter (NCF)
这个示例sampleMovieLens是一个端到端的示例,它导入一个经过训练的TensorFlow模型,并为每个用户预测最高收视率的电影。这个例子演示了一个简单的电影推荐系统,它使用了基于多层感知器(MLP)的神经协作滤波器(NCF)推荐器。
What does this sample do?
具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
Where is this sample located?
此示例保存在GitHub: sampleMovieLens存储库中的samples/opensource/sampleMovieLens目录下。如果使用Debian或RPM包,则示例位于
/usr/src/tensorrt/samples/sampleMovieLens。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleMovieLens。
How do I get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMovieLens/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
这个示例sampleMovieLensMPS是一个端到端的示例,它导入经过训练的TensorFlow模型,并使用MPS(多进程服务)为每个用户预测最高评级的电影。
What does this sample do?
MPS允许多个CUDA进程共享一个GPU上下文。使用MPS,可以同时调度来自不同进程的多个重叠内核执行和memcpy操作,以实现最大利用率。对于资源利用率低的小型网络,例如主要由一系列小型MLP组成的网络,这对于提高并行性尤其有效。
此示例在功能上与使用神经协作过滤器(NCF)的电影推荐相同,但经过修改以支持多个进程中的并发执行。具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
注:目前,sampleMovieLensMPS只支持Linux x86-64(包括Ubuntu和RedHat)桌面用户。
Where is
this sample located?
此示例保存在GitHub: sampleMovieLensMPS存储库中的
samples/opensource/sampleMovieLensMPS目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleMovieLensMPS。如果使用tar或zip包,则示例位于<extracted_path>/samples/sampleMovieLensMPS。
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMovieLensMPS/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
3.2. Movie
Recommendation Using MPS (Multi-Process Service)
这个示例sampleMovieLensMPS是一个端到端的示例,它导入经过训练的TensorFlow模型,并使用MPS(多进程服务)为每个用户预测最高评级的电影。
What does
this sample do?
MPS允许多个CUDA进程共享一个GPU上下文。使用MPS,可以同时调度来自不同进程的多个重叠内核执行和memcpy操作,以实现最大利用率。对于资源利用率低的小型网络,例如主要由一系列小型MLP组成的网络,这对于提高并行性尤其有效。 此示例在功能上与使用神经协作过滤器(NCF)的电影推荐相同,但经过修改以支持多个进程中的并发执行。具体地说,这个示例演示了如何为TensorRT可以加速的MovieLens数据集生成权重。
注:目前,sampleMovieLensMPS只支持Linux x86-64(包括Ubuntu和RedHat)桌面用户。
Where is this sample located?
This
sample is maintained under thesamples/opensource/sampleMovieLensMPS
directory in the GitHub: sampleMovieLensMPS
repository. If using the Debian or RPM package, the sample is located at
/usr/src/tensorrt/samples/sampleMovieLensMPS. If using
the tar or zip package, the sample is at<extracted_path>/samples/sampleMovieLensMPS.
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub:sampleMovieLensMPS/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
3.3. “Hello World” For
Multilayer Perceptron (MLP)
这个示例sampleMLP是一个简单的hello
world示例,演示了如何创建一个触发多层感知器(MLP)优化器的网络。生成的MLP优化器可以加速TensorRT。
Where is
this sample located?
此示例保存在GitHub:sampleMLP存储库中的samples/opensource/sampleMLP目录下。如果使用Debian或RPM包,则示例位于/usr/src/tensorrt/samples/sampleMLP。如果使用tar或zip包,则示例位于<extracted_path>/samplesMLP。
How do I
get started?
有关入门的更多信息,请参见使用C++示例开始。有关此示例的详细信息,请参阅GitHub: sampleMLP/README.md文件获取有关此示例如何工作的详细信息、示例代码以及有关如何运行和验证其输出的分步说明。
Recommenders with TensorRT的更多相关文章
- TensorRT 介绍
引用:https://arleyzhang.github.io/articles/7f4b25ce/ 1 简介 TensorRT是一个高性能的深度学习推理(Inference)优化器,可以为深度学习应 ...
- 基于TensorRT的BERT实时自然语言理解(上)
基于TensorRT的BERT实时自然语言理解(上) 大规模语言模型(LSLMs)如BERT.GPT-2和XL-Net为许多自然语言理解(NLU)任务带来了最先进的精准飞跃.自2018年10月发布以来 ...
- Eclipse增强代码提示插件Code Recommenders安装,顺便说说Eclipse插件安装方法
1.为什么用Code Recommenders 在用过Intelij Idea后,发现它的自动代码提示非常智能,可以敲关键字就能提示,但是因为公司用的是Eclipse, 所以想找有没有这个插件能增强代 ...
- TensorRT学习总结
TensorRT是什么 建议先看看这篇https://zhuanlan.zhihu.com/p/35657027 深度学习 训练 部署 平常自学深度学习的时候关注的更多是训练的部分,即得到一个模型.而 ...
- TensorRT&Sample&Python[yolov3_onnx]
本文是基于TensorRT 5.0.2基础上,关于其内部的yolov3_onnx例子的分析和介绍. 本例子展示一个完整的ONNX的pipline,在tensorrt 5.0的ONNX-TensorRT ...
- TensorRT&Sample&Python[uff_custom_plugin]
本文是基于TensorRT 5.0.2基础上,关于其内部的uff_custom_plugin例子的分析和介绍. 本例子展示如何使用cpp基于tensorrt python绑定和UFF解析器进行编写pl ...
- TensorRT&Sample&Python[fc_plugin_caffe_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的fc_plugin_caffe_mnist例子的分析和介绍. 本例子相较于前面例子的不同在于,其还包含cpp代码,且此时依赖项还挺多.该例子展 ...
- TensorRT&Sample&Python[network_api_pytorch_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的network_api_pytorch_mnist例子的分析和介绍. 本例子直接基于pytorch进行训练,然后直接导出权重值为字典,此时并未 ...
- TensorRT&Sample&Python[end_to_end_tensorflow_mnist]
本文是基于TensorRT 5.0.2基础上,关于其内部的end_to_end_tensorflow_mnist例子的分析和介绍. 1 引言 假设当前路径为: TensorRT-5.0.2.6/sam ...
随机推荐
- C实现十进制与十六进制转换
include <stdio.h> include <stdlib.h> include <string.h> include <locale.h> i ...
- hdu4403暴力搜索
题意: 给你一个数字串,让你在里面添加一个=和若干个+,使等式成立. 思路: lmax最大是15,直接暴搜,无压力,关键是判重,要在答案的时候判重,一开始在进队列之前判的,各种wa ...
- 病毒木马查杀实战第023篇:MBR病毒之引导区的解析
前言 引导型病毒指寄生在磁盘引导区或主引导区的计算机病毒.这种病毒利用系统引导时,不对主引导区的内容正确与否进行判别的缺点,在引导系统的过程中入侵系统,驻留内存,监视系统运行,伺机传染和破坏.按照引导 ...
- C#-宽带连接
public static string Connect(string UserS,string PwdS) { string arg = @"rasdial.exe 宽带连接" ...
- Caddy-基于go的微型serve用来做反向代理和Gateway
1.简单配置 2.go实现,直接一个二进制包,没依赖. 3.默认全站https 常用 反向代理,封装多端口gateway 使用:启动直接执行二进制文件 caddy 就行 根据输出信息 直接https: ...
- mysql-创建用户并授权,设置允许远程连接
一.创建用户并授权 1.登录mysql mysql -u root -q 2.创建数据库 create database dbdata;//以创建dbdata为例 3.创建用户 创建user01,只能 ...
- vue-router的几种用法
1.全局路由守卫 router.beforeEach((to, from, next) => { // ... }) 当一个导航触发时,全局前置守卫按照创建顺序调用.守卫是异步解析执行,此时导航 ...
- MySQL数据迁移那些事儿
前言: 在平时工作中,经常会遇到数据迁移的需求,比如要迁移某个表.某个库或某个实例.根据不同的需求可能要采取不同的迁移方案,数据迁移过程中也可能会遇到各种大小问题.本篇文章,我们一起来看下 MySQL ...
- netcore3.1 webapi使用signalR
前言 今天尝试了一下signalR,感觉还不错,因为暂时用不到,就写一篇博文来记录搭建过程,以免以后给忘了,基于官方文档写的,不过官方没有webapi调用例子,就自己写了一下,大神勿喷 使用 1.创建 ...
- x265编码命令
CQP: #/bin/bash ./x265 --input FourPeople_1280x720_60.yuv --input-res 1280x720 --fps 60 --qp 40 --fr ...