http://www.lydsy.com/JudgeOnline/problem.php?id=4559

f[i][j] 表示前i门课,有j个人没有被碾压的方案数

g[i] 表示第i门课,满足B神排名的分数安排方案数

g[i]的求法:

枚举B神这门课x分,则有n-Ri个人的分数<=x ,Ri-1个人的分数>x

Ui 上限是1e9,但是g[i] 是一个关于Ui 的n次多项式,所以可以用拉格朗日插值法来求

递推 f[i][j]:

假设f[i-1][w] 转移到了f[i][j],j>=w

前i-1门课没有被碾压,前i门课也一定没有被碾压

前i-1门课被碾压,前i门课可能继续被碾压,也可能不再被碾压

单看这一门课有Ri-1个人的成绩比B神高

但这Ri-1个人之前可能就有科目比B神高,已经不被碾压,这次成绩比B神高还是低都行

所以实际新增加了j-w个没有被碾压的,即这j-w个人 这一门 的成绩比B神高,之前的科目都比B神低

在已经没有被碾压的w个人中,还存在 Ri-1-(j-w) 个人的成绩比B神高

之前有n-w-1个人被碾压,所以新增情况的方案数为C(n-w-1,j-w)

后一种情况的方案数为C(w,Ri-1-j+w)

#include<cstdio>
#include <iostream> using namespace std; const int mod=1e9+; #define N 101 int C[N][N];
int U[N],rk[N];
int f[N][N];
int g[N]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} int get_C(int n,int m)
{
if(n< || m< || n<m) return ;
return C[n][m];
} void pre_C()
{
C[][]=;
for(int i=;i<=;++i)
{
C[i][]=;
for(int j=;j<=i;++j)
C[i][j]=(C[i-][j-]+C[i-][j])%mod;
}
} int Pow(int a,int b)
{
int res=;
for(;b;a=1LL*a*a%mod,b>>=)
if(b&) res=1LL*res*a%mod;
return res;
} int Langrange(int n,int r,int k)
{
for(int u=;u<=k;++u)
{
g[u]=;
for(int x=;x<=u;++x)
g[u]=(g[u]+1LL*Pow(u-x,r-)*Pow(x,k--r)%mod)%mod;
if(n==u) return g[u];
}
int fz=;
for(int i=;i<=k;++i) fz=1LL*fz*(n-i)%mod;
int fm,ans=;
for(int i=;i<=k;++i)
{
fm=n-i;
for(int j=;j<=k;++j)
if(i!=j) fm=1LL*fm*(i-j)%mod;
ans=(ans+1LL*fz*g[i]%mod*Pow(fm,mod-)%mod)%mod;
}
if(ans<) ans+=mod;
return ans;
} int main()
{
int n,m,k;
read(n); read(m); read(k);
for(int i=;i<=m;++i) read(U[i]);
for(int i=;i<=m;++i) read(rk[i]);
pre_C();
int G;
f[][]=;
for(int i=;i<=m;++i)
{
G=Langrange(U[i],rk[i],n+);
for(int j=;j<=n;++j)
{
for(int w=;w<=j;++w)
f[i][j]=(f[i][j]+1LL*f[i-][w]*get_C(w,rk[i]--j+w)%mod*get_C(n-w-,j-w)%mod)%mod;
f[i][j]=1LL*f[i][j]*G%mod;
}
}
printf("%d",f[m][n-k-]);
return ;
}

4559: [JLoi2016]成绩比较

Time Limit: 20 Sec  Memory Limit: 256 MB
Submit: 366  Solved: 211
[Submit][Status][Discuss]

Description

G系共有n位同学,M门必修课。这N位同学的编号为0到N-1的整数,其中B神的编号为0号。这M门必修课编号为0到M-
1的整数。一位同学在必修课上可以获得的分数是1到Ui中的一个整数。如果在每门课上A获得的成绩均小于等于B获
得的成绩,则称A被B碾压。在B神的说法中,G系共有K位同学被他碾压(不包括他自己),而其他N-K-1位同学则没
有被他碾压。D神查到了B神每门必修课的排名。这里的排名是指:如果B神某门课的排名为R,则表示有且仅有R-1
位同学这门课的分数大于B神的分数,有且仅有N-R位同学这门课的分数小于等于B神(不包括他自己)。我们需要
求出全系所有同学每门必修课得分的情况数,使其既能满足B神的说法,也能符合D神查到的排名。这里两种情况不
同当且仅当有任意一位同学在任意一门课上获得的分数不同。你不需要像D神那么厉害,你只需要计算出情况数模1
0^9+7的余数就可以了。

Input

第一行包含三个正整数N,M,K,分别表示G系的同学数量(包括B神),必修课的数量和被B神碾压的同学数量。第二
行包含M个正整数,依次表示每门课的最高分Ui。第三行包含M个正整数,依次表示B神在每门课上的排名Ri。保证1
≤Ri≤N。数据保证至少有1种情况使得B神说的话成立。N<=100,M<=100,Ui<=10^9

Output

仅一行一个正整数,表示满足条件的情况数模10^9+7的余数。

Sample Input

3 2 1
2 2
1 2

Sample Output

10

bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)的更多相关文章

  1. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  2. bzoj 4559 [JLoi2016]成绩比较——拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4559 关于拉格朗日插值,可以看这些博客: https://www.cnblogs.com/E ...

  3. bzoj千题计划281:bzoj4558: [JLoi2016]方

    http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少 ...

  4. bzoj千题计划272:bzoj4557: [JLoi2016]侦察守卫

    http://www.lydsy.com/JudgeOnline/problem.php?id=4557 假设当前到了x的子树,现在是合并 x的第k个子树 f[x][j] 表示x的前k-1个子树该覆盖 ...

  5. bzoj千题计划196:bzoj4826: [Hnoi2017]影魔

    http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...

  6. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  7. bzoj千题计划177:bzoj1858: [Scoi2010]序列操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...

  8. bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...

  9. bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...

随机推荐

  1. 前端项目模块化的实践3:使用 TypeScript 的收益

    以下是关于前端项目模块化的实践,包含以下内容: 搭建 NPM 私有仓库管理源码及依赖: 使用 Webpack 打包基础设施代码: 使用 TypeScript 编写可靠类库 使用 TypeScript ...

  2. 【Tableau】电商广告投放的地域分析

    分析师的职责是利用处理数据获取信息,提炼规律,帮助企业正确决策业务方向. 所以,一个好的分析师绝不能被数据所困,既要深入业务,理解业务,也要高瞻远瞩,以领导者的思维借助数据分析的辅助做出判断. [结构 ...

  3. Jenkins 构建运行java程序

    我们将在Jenkins建立执行一个简单的 HelloWorld 应用程序,构建和运行Java程序.打开网址:http://localhost:8080/jenkins 第1步- 转到Jenkins 仪 ...

  4. Ubuntu16.4下QT配置opencv3.1+FFmpeg

    安装依赖环境 sudo apt-get install build-essential sudo apt-get install cmake git libgtk2.0-dev pkg-config ...

  5. Unity2D 面向目标方向

    在2d空间上,假设角色的自身的y轴方向为正方向,如果要让角色随时面向一个目标点. 这里假设(0,0)点为目标点 第一种: Vector3 v = Vector3.zero - transform.po ...

  6. 1080. Graduate Admission (30)-排序

    先对学生们进行排序,并且求出对应排名. 对于每一个学生,按照志愿的顺序: 1.如果学校名额没满,那么便被该学校录取,并且另vis[s][app[i].ranks]=1,表示学校s录取了该排名位置的学生 ...

  7. X86主要的几种寻址方式

    一.首先 P33: 严格来说有三种寻址方式 与数据有关的寻址方式 与转移指令或过程调用指令有关的寻址方式 与IO指令有关的寻址方式 这篇博客只讲1.2两条 二.然后 1. 与数据有关的寻址方式 数据, ...

  8. Linux 第五章 学习笔记

    ---恢复内容开始--- 第五章 系统调用 一.与内核通信 1.系统调用在用户控件进程和硬件设备之间添加了一个中间层. 为用户空间提供了一种硬件的抽象接口 系统调用保证了系统的稳定和安全 每个进程都运 ...

  9. Linux第六周学习总结——进程额管理和进程的创建

    Linux第六周学习总结--进程额管理和进程的创建 作者:刘浩晨 [原创作品转载请注明出处] <Linux内核分析>MOOC课程http://mooc.study.163.com/cour ...

  10. Docker(五)-Dcoker容器

    简单的说,容器是独立运行的一个或一组应用,以及它们的运行态环境. 如果把镜像看成面向对象中的 类 的话,那么容器就是 类 的实例化 对象. 容器 启动容器 启动容器有两种方式,一种是基于镜像新建一个容 ...