Bellman-Ford 最短路径算法
算法证明:http://courses.csail.mit.edu/6.006/spring11/lectures/lec15.pdf
先来看一个这样的图:
这是含有负边权的,如果是用djistra的话将会进行无限次松弛操作。从这里可以看出松弛操作是有一点问题的,如果存在负环,将无止尽的松弛,最短路也就不存在了。还有就是选择不同的遍历顺序对于松弛操作来说是挺重要的。今天就来了解一下聪明的Bellman-Ford算法吧!
Bellman-Ford算法每一轮把边按照一定的顺序,逐条边进行松弛。经过|V|-1轮后,得到的必定是最短路径。
献上松弛操作和Bellman-Ford算法的伪代码:
/*
松弛操作
*/
for v in V:
dist[v] = ∞
dist[s]=
while some edge(u,v) has dist[v]>dist[u]+w(u,v):
pick such an edge(u,v)
relax(u,v):
if dist[v]>dist[u]+w(u,v):
dist[v]=dist[u]+w(u,v) /*
Bellman-Ford
*/
for v in V:
dist[v] = ∞
dist[s]=
for i from to |V|-:
for(u,v)in E:
relax(u,v):
if dist[v]>dist[u]+w(u,v):
dist[v]=dist[u]+w(u,v)
接下来就以上图为例,按照以下顺序处理所有的边:(A,B),(A,C),(B,C),(B,D),(B,E),(E,D),(D,B),(D,C).
然后进行第一次迭代:
最开始dist数组的内容为[0,∞,∞,∞,∞],现在处理(A,B),由于dist[B]=∞,dist[A]+w(A,B)=-1,此时应更新dist[B],即dist为[0,-1,∞,∞,∞]。
同理,按照顺序逐个处理边,将得到以下的dist变化过程:
[0,-1,4,∞,∞] (A,C)
[0,-1,2,∞,∞] (B,C)
[0,-1,2,1,∞] (B,D)
[0,-1,2,1,1] (B,E)
[0,-1,2,-2,1] (E,D)
[0,-1,2,-2,1] (D,B)
[0,-1,2,-2,1] (D,C)
第一轮的最后结果就为上面最后一行,当然了,这个不一定是最优的,因此我们还需要进行下一轮,经过|V-1|次后就一定能求出最短路了。
当然,存在负环是无法得到最短路的,此时只需要在最后进行判断,对每条边都判断以下能不能再进行松弛操作,如果存在可以的边,那就是出现负环了。
Bellman-Ford 最短路径算法的更多相关文章
- 21.boost Ford最短路径算法(效率低)
到某个节点最近距离 最短路径当前节点的父节点 完整代码 #include <iostream> #include <string> #incl ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
- Bellman-Ford 单源最短路径算法
Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- 最短路径算法(II)
什么??你问我为什么不在一篇文章写完所有方法?? Hmm…其实我是想的,但是博皮的加载速度再带上文章超长图片超多的话… 可能这辈子都打不开了吧… 上接https://www.cnblogs.com/U ...
随机推荐
- 推荐一个MacOS苹果电脑系统解压缩软件
废话少说,直入主题: 连接:https://www.keka.io/en/ 开源免费好用(个人觉得比betterzip好用哈),附一张这货的图标:
- 并发系列(一)-----synchronized关键字
一 简介 说到并发不得不提的synchronized,synchronized关键字是元老级别的角色.在Java SE 1.6之前synchronized被称为是重量,在1.6之后对同步进行了一系列的 ...
- 使用unity3d和tensorflow实现基于姿态估计的体感游戏
使用unity3d和tensorflow实现基于姿态估计的体感游戏 前言 之前做姿态识别,梦想着以后可以自己做出一款体感游戏,然而后来才发现too young.但是梦想还是要有的,万一实现了呢.趁着p ...
- 绕WAF&安全狗新姿势
俗话说只要思路宽,绕狗绕的欢.前段时间我有尝试着用以下的方法绕狗,效果还不错.不过这方法呢也许这段时间可以绕过,过段时间可能就失效了,大家还是要多去尝试找到更多的方法. 举例-->整型注入 绕过 ...
- [T-ARA][Ma boo]
歌词来源:http://music.163.com/#/song?id=22704447 作曲 : 金道勋/Rhymer [作曲 : 金道勋/Rhymer] 作词 : 金道勋 [作词 : 金道勋] 사 ...
- JAVA每日一旅
1.关于final关键字 final修饰的成员变量为基本数据类型时,在赋值之后无法改变.当final修饰的成员变量为引用数据类型时,在赋值后其指向地址无法改变,但是对象内容还是可以改变的. final ...
- SCRUM 12.17
今天,我们的用户统计功能终于上线了!! 大家辛苦工作了许久.我们测试的用户统计功能效果模拟如下 还有一些好消息,比如,我们的应用在小米平台收到了崩溃的反馈报告. 这说明我们留下的一些BUG暴露了出来, ...
- 重温httpsession①
Session—HTTPSession 服务器创建的,Javaweb提供的 与HTTP协议无关是服务器端对象,保存在服务器端.用来会话跟踪. Cookie与服务器创建,与HTTP协议相关,保存在客户端 ...
- IOS的开发演变历史
对IOS开发平台一直抱有很大兴趣,正好通过这个机会好好了解一下IOS的开发历程! 通过一些查阅,我了解到IOS的开发平台主要是依靠Xcode软件来编写程序,同时又需要在MAC OS X的环境下运行,w ...
- ping出现dup问题
华为交换机收到mac地址漂移告警: Dec 24 2018 16:48:22+08:00 HW5320 %%01SECE/4/UCSUPPRESSRESUME(l) [66]:MAC address ...