bzoj千题计划193:bzoj2460: [BeiJing2011]元素
http://www.lydsy.com/JudgeOnline/problem.php?id=2460
按魔力值从小到大排序构造线性基
#include<cstdio>
#include<iostream>
#include<algorithm> using namespace std; typedef long long LL; LL b[]; template <typename T>
void read(T &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} struct node
{
LL num;
int magic;
}e[]; bool cmp(node p,node q)
{
return p.magic>q.magic;
} int main()
{
int n;
read(n);
for(int i=;i<=n;++i)
{
read(e[i].num);
read(e[i].magic);
}
sort(e+,e+n+,cmp);
int ans=;
for(int i=;i<=n;++i)
for(int j=;j>=;--j)
if(e[i].num>>j&)
{
if(!b[j])
{
b[j]=e[i].num;
ans+=e[i].magic;
break;
}
e[i].num^=b[j];
}
cout<<ans;
}
2460: [BeiJing2011]元素
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 1748 Solved: 905
[Submit][Status][Discuss]
Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18
,Magici ≤ 10^4
bzoj千题计划193:bzoj2460: [BeiJing2011]元素的更多相关文章
- bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块
http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...
- bzoj千题计划196:bzoj4826: [Hnoi2017]影魔
http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...
- bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)
https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...
- bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪
http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...
- bzoj千题计划251:bzoj3672: [Noi2014]购票
http://www.lydsy.com/JudgeOnline/problem.php?id=3672 法一:线段树维护可持久化单调队列维护凸包 斜率优化DP 设dp[i] 表示i号点到根节点的最少 ...
- bzoj千题计划177:bzoj1858: [Scoi2010]序列操作
http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...
- bzoj千题计划313:bzoj3879: SvT(后缀数组+st表+单调栈)
https://www.lydsy.com/JudgeOnline/problem.php?id=3879 把所有的后缀取出,按rank排序 求出相邻两个后缀的lcp 每个后缀对答案的贡献就是 与在它 ...
- bzoj千题计划312:bzoj2119: 股市的预测(后缀数组+st表)
https://www.lydsy.com/JudgeOnline/problem.php?id=2119 题意:将给定数组差分后,求ABA形式的字串个数,要求|B|=m,|A|>0 1.后缀数 ...
- bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)
https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...
随机推荐
- JS基础内容小结(event 鼠标键盘事件)(三)
var ev=ev||event 兼容性处理 得到焦点为 onfocus 失去焦点 onblur return false能阻止部分函数的执行 obj.select 选择指定元素里的文本内容 ———— ...
- Python3 str去除空格
一.去除str两端空格(strip()) a.去除左端空格 lstrip() str0='abcdef' str1=' abcdef' print(str0) print(str1.lstrip() ...
- Jenkins报表 代码 指标分析
Jenkins报表 这表现在前面的章节中,也有可用最简单的一种是适用于 JUnit 测试报告的许多报表插件. 在生成后动作进行任何工作,你可以定义要创建的报告. 该构建已经完成,测试结果选项将可进一步 ...
- 深入浅出Spark的Checkpoint机制
1 Overview 当第一次碰到 Spark,尤其是 Checkpoint 的时候难免有点一脸懵逼,不禁要问,Checkpoint 到底是什么.所以,当我们在说 Checkpoint 的时候,我们到 ...
- Shell 基础 -- 输入、输出重定向
一.文件描述符 文件描述符是一个非负的整数,Linux 中每个运行中的程序(进程),都有一些与之关联的文件描述符,你可以使用文件描述符来访问打开的文件或设备.在标准 I/O 库中,与文件描述符对应的是 ...
- lambda表达式,map函数
lambda只是一个表达式,不需要定义函数,故也是匿名函数,用法为:lambda 参数:表达式. x=5 list1=[2,3,4] list2=[10,20,30] s=lambda x:x**3 ...
- Node.js Event Loop 的理解 Timers,process.nextTick()
写这篇文章的目的是将自己对该文章的理解做一个记录,官方文档链接The Node.js Event Loop, Timers, and process.nextTick() 文章内容可能有错误理解的地方 ...
- C. Smallest Word
链接 [http://codeforces.com/contest/1043/problem/C] 题意 给你一个只包含a,b的字符串,有一种操作把第1个字符到第i个字符的子串进行反转,问要使最后字符 ...
- Sprint第二个计划
一.现状 现在是冲刺的第二个阶段了,我们的进度还是一样,没有太大的进展.所以这一个阶段应该加紧进度,好好学习别的组,弥补我们组的不足.一开始我们是打算用原来的初级APP,然后再补充一些新的内容.可是现 ...
- SSM 框架快速整合实例--学生查询
一.快速准备 SSM 框架即 Spring 框架.SpringMVC 框架.MyBatis 框架,关于这几个框架的基础和入门程序,我前面已经写过几篇文章作为基础和入门介绍了.对于这 3 个框架还不熟悉 ...