洛谷题目传送门

闲话

这是所有LCT题目中的一个异类。

之所以认为是LCT题目,是因为本题思路的瓶颈就在于如何去维护同颜色的点的集合。

只不过做着做着,感觉后来的思路(dfn序,线段树,LCA)似乎要喧宾夺主了。。。(至少在代码上看是如此)

思路分析

一个一个操作来(瞎BB中,这种思路模式并不具有普遍性。。。。。。)

1操作

还好我没学树剖233333以至于(直接想到)只好用LCT来维护颜色。

题目透露出的神奇的性质——每一种颜色,无论在任何时刻,肯定是一条链,而且点的深度严格递增!

而且还特意指定根节点!1操作特意修改x到根节点的颜色!

想到了这里,就不难想到本题的关键模型——LCT中每个Splay辅助树维护同颜色点的集合

于是1操作==access。。。。。。

2操作

x到y路径?split?!

I'm too young too simple

LCT维护了集合,就只能维护集合了。随便再乱搞一下集合就被破坏了。

于是就要再外部维护了。

至于维护什么,现在其实还不能产生很好的思路。。。。。

但我们可以先想到一点:没有了LCT,还要资磁树中任意两点之间的询问?

常见的复杂度正确的方法(套路)能想到的就只有树上差分了吧(设F为状态,那么就形如F[x]+F[y]-F[lca])

于是就可以只维护每个点到根节点路径上的颜色种数

转化一下,在LCT中就等价于每个点到根节点路径所要经过的轻边总数,这里又是一个关键点

查询F[x]+F[y]-2F[lca]+1(+1是因为lca所在的颜色被减了两次)

不会树剖,只好写倍增LCA

然后就可以转而思考如何维护这个状态了

首先初始状态就是每个点的深度,然后就接着考虑修改了。

因为状态只与轻边有关,所以在access时更改就可以啦

可以类比一下LCT维护子树信息和(可参考一下Blog的LCT总结

access中有替换右儿子的操作,等于把原来一条边变轻,新的一条边变重

那么原来那条边所指的子树状态全部要+1(多了一个轻边),新连上的边所指的子树状态全部要-1

于是问题又出现了。。。

众所周知,LCT可以维护子树信息,但不可以修改子树信息

树剖很好维护就不提了,然后我又不会树剖TOT(我太弱了)

在这紧要关头,dfn序救了我。。。。。。

一个子树,所有的点的dfn序一定是连续的区间

所以维护线段树,表示dfn序的区间,修改的时候在对应的区间修改,查询就单点查

3操作

所有的思路难点,在操作2冗长的思路分析中都攻克了

这里就在线段树里维护状态最大值(树剖也一样),区间查询就好啦

至于写法,线段树里的区间加减法可以写懒标记,也可以实现永久化标记(YL巨佬做法,常数暴踩本蒟蒻,目前rank1)

只不过我试了一下,dfn序线段树写永久化标记因为某些无法描述的玄学问题变得更慢了。。。。。。

思路就这样,有些细节在代码里(Debug一晚上带来的惨痛的经验。。。。。。)

算上in,pup,pdn和main,此程序一共有15个函数。。。。。。

#include<cstdio>
#include<iostream>
using namespace std;
#define I inline
#define R register int
#define G ch=getchar()
#define in(z) G;\
while(ch<'-')G;\
z=ch&15;G;\
while(ch>'-')z*=10,z+=ch&15,G
#define lc x<<1
#define rc x<<1|1
#define pup mx[x]=max(mx[lc],mx[rc])
#define pdn if(lz[x])upd(lc,l[x],m[x],lz[x]),upd(rc,m[x]+1,r[x],lz[x]),lz[x]=0
//都是线段树操作,本题的LCT内部没有维护信息
const int N=100009,M=N*20;
int l[M],m[M],r[M],mx[M],lz[M],f[N],c[N][2],st[N][20],o[N];
int p=1,he[N],ne[N<<1],to[N<<1],d[N],dfn[N],at[N],mr[N],now;
//at是dfn的反表示,mr表示每个点的子树在dfn序区间中的右端点(左端点是它自己)
I void dfs(R x,R fa){//建树预处理
d[now=at[dfn[x]=++p]=x]=d[st[x][0]=f[x]=fa]+1;//一堆信息的预处理压进了一行
for(R&i=o[x];(st[x][i+1]=st[st[x][i]][i]);++i);//倍增LCA预处理
for(R i=he[x];i;i=ne[i])
if(fa!=to[i])dfs(to[i],x);
mr[x]=now;
}
I int lca(R x,R y){//求LCA
if(d[x]<d[y])swap(x,y);
for(R i=o[x];i>=0;--i)
if(d[st[x][i]]>=d[y])x=st[x][i];//Debug中的错误1:>=写成了>
if(x==y)return x;
for(R i=o[x];i>=0;--i)
if(st[x][i]!=st[y][i])x=st[x][i],y=st[y][i];
return st[x][0];
}
I void build(R x,R s,R e){//建线段树
l[x]=s;r[x]=e;m[x]=(s+e)>>1;
if(s==e){mx[x]=d[at[s]];return;}//利用反表示找到初始状态
build(lc,s,m[x]);build(rc,m[x]+1,e);pup;
}
I void upd(R x,R s,R e,R v){//区间修改
if(l[x]==s&&r[x]==e){mx[x]+=v;lz[x]+=v;return;}//注意mx也要变
pdn;
if(e<=m[x])upd(lc,s,e,v);
else if(s>m[x])upd(rc,s,e,v);
else upd(lc,s,m[x],v),upd(rc,m[x]+1,e,v);
pup;
}
I int get(R s){//单点查值,与区间查值分开了,为了减小常数
R x=1;
while(l[x]!=r[x]){
pdn;x=(lc)+(s>m[x]);
}
return mx[x];
}
I int ask(R x,R s,R e){//区间查值
if(l[x]==s&&r[x]==e)return mx[x];
pdn;
if(e<=m[x])return ask(lc,s,e);
if(s>m[x])return ask(rc,s,e);
return max(ask(lc,s,m[x]),ask(rc,m[x]+1,e));
}
I bool nrt(R x){//LCT部分
return c[f[x]][0]==x||c[f[x]][1]==x;
}
I void rot(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nrt(y))c[z][c[z][1]==y]=x;c[x][!k]=y;c[y][k]=w;
f[w]=y;f[y]=x;f[x]=z;//Debug中的错误2:y写成了x
}
I void splay(R x){
R y;
while(nrt(x)){
if(nrt(y=f[x]))rot((c[f[y]][0]==y)^(c[y][0]==x)?x:y);
rot(x);
}
}
I int frt(R x){//有别于传统意义下的findroot
while(c[x][0])x=c[x][0];
return x;
}
I void access(R x){
for(R w,y=0;x;x=f[y=x]){
splay(x);
if(c[x][1])w=frt(c[x][1]),upd(1,dfn[w],dfn[mr[w]],1);
if((c[x][1]=y))w=frt(y),upd(1,dfn[w],dfn[mr[w]],-1);
//Debug中的错误3:这里更新要找原子树的根(即深度最小的那个点)
//而不能把辅助树的根当原子树根直接upd(1,dfn[c[x][1]],dfn[mr[c[x][1]]],1)
}
}
int main(){
register char ch;
R n,m,i,a,b,op,x,y;
in(n);in(m);
for(i=1;i<n;++i){
in(a);in(b);
to[++p]=b;ne[p]=he[a];he[a]=p;
to[++p]=a;ne[p]=he[b];he[b]=p;
}
p=0;dfs(1,0);build(1,1,n);
while(m--){
in(op);in(x);
if(op==1)access(x);
else if(op==2){
in(y);
printf("%d\n",get(dfn[x])+get(dfn[y])-get(dfn[lca(x,y)])*2+1);
}
else printf("%d\n",ask(1,dfn[x],dfn[mr[x]]));
}
return 0;
}

洛谷P3703 [SDOI2017]树点涂色(LCT,dfn序,线段树,倍增LCA)的更多相关文章

  1. [BZOJ4817][SDOI2017]树点涂色(LCT+DFS序线段树)

    4817: [Sdoi2017]树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 692  Solved: 408[Submit][Status ...

  2. BZOJ.4817.[SDOI2017]树点涂色(LCT DFS序 线段树)

    题目链接 操作\(1.2\)裸树剖,但是操作\(3\)每个点的答案\(val\)很不好维护.. 如果我们把同种颜色的点划分到同一连通块中,那么向根染色的过程就是Access()! 最初所有点间都是虚边 ...

  3. bzoj4817/luogu3703 树点涂色 (LCT+dfs序+线段树)

    我们发现,这个染色的操作他就很像LCT中access的操作(为什么??),然后就自然而然地想到,其实一个某条路径上的颜色数量,就是我们做一个只有access操作的LCT,这条路径经过的splay的数量 ...

  4. P3703 [SDOI2017]树点涂色 LCT维护颜色+线段树维护dfs序+倍增LCA

    \(\color{#0066ff}{ 题目描述 }\) Bob有一棵\(n\)个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同. 定义一条路径的权值是:这条路径上的点 ...

  5. bzoj 3779 重组病毒 好题 LCT+dfn序+线段树分类讨论

    题目大意 1.将x到当前根路径上的所有点染成一种新的颜色: 2.将x到当前根路径上的所有点染成一种新的颜色,并且把这个点设为新的根: 3.查询以x为根的子树中所有点权值的平均值. 分析 原题codec ...

  6. [BZOJ4817][SDOI2017]树点涂色:Link-Cut Tree+线段树

    分析 与[BZOJ3779]重组病毒唯一的区别是多了一个链上求实链段数的操作. 因为每条实链的颜色必然不相同且一条实链上不会有两个深度相同的点(好像算法的正确性和第二个条件没什么关系,算了算了),画图 ...

  7. [Sdoi2017]树点涂色 [lct 线段树]

    [Sdoi2017]树点涂色 题意:一棵有根树,支持x到根染成新颜色,求x到y颜色数,求x子树里点到根颜色数最大值 考场发现这个信息是可减的,但是没想到lct 特意设计成lct的形式! 如何求颜色数? ...

  8. 【BZOJ4817】[Sdoi2017]树点涂色 LCT+线段树

    [BZOJ4817][Sdoi2017]树点涂色 Description Bob有一棵n个点的有根树,其中1号点是根节点.Bob在每个点上涂了颜色,并且每个点上的颜色不同.定义一条路径的权值是:这条路 ...

  9. 【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]

    树点涂色 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Bob有一棵n个点的有根树,其中1 ...

随机推荐

  1. struts2_maven_learning

    以下为学习maven struts2 的学习过程,现记录如下. 1.创建一个完善的maven程序 maven:(jar) 1)maven project 2)facet 3)pom.xml,depen ...

  2. mvn dependency:tree

    jar依赖冲突解决实践 前言 随着功能的增多,各种中间件的引入.应用以来的各种jar的规模极具膨胀,出现jar冲突和Class冲突的问题层出不穷,让人不胜其扰.本文针对冲突,提供一个排查和定位问题的最 ...

  3. Class does not Implement Equals——Code Correctness(代码正确性)

        系列文章目录:     使用Fortify进行代码静态分析(系列文章) class does not implement equals(类未能实现Equals方法)   示例:  protec ...

  4. java.lang.IllegalStateException: Cannot forward after response has been committe

    参考:https://blog.csdn.net/lewky_liu/article/details/79845655 加上 return 搞定

  5. [CERC2017]Intrinsic Interval[scc+线段树优化建图]

    题意 给定一个长度为 \(n\) 的排列,有 \(q\) 次询问,每次询问一个区间 \([l,r]\) ,找到最小的包含 \([l,r]\) 的区间,满足这个区间包含了一段连续的数字. \(n\leq ...

  6. LOJ.#6468. 魔法[差分+树状数组]

    题意 题目链接 分析 将询问差分并不断加入颜色. 每种颜色,一个位置 \(p\) 都只会走到与之左右相邻的两个位置之一,分类讨论 \(\rm |A-B|\) 的符号. 实现可以使用树状数组. 总时间复 ...

  7. ConceptVector: Text Visual Analytics via Interactive Lexicon Building using Word Embedding

      论文简介 本文是对词嵌入的一种应用,用户可以根据自己的需要创建concept,系统根据用户提供的seed word推荐其他词汇,以帮助用户更高的构建自己的concept.同时用户可以利用自己创建的 ...

  8. PTA (Advanced Level) 1002 A+B for Polynomials

    1002 A+B for Polynomials This time, you are supposed to find A+B where A and B are two polynomials. ...

  9. 理解以太坊的Layer 2扩容解决方案:状态通道(State Channels)、Plasma 和 Truebit

    -宾夕法尼亚州的尼科尔森大桥建设照片(图源).罗马人的工程原理扩展至新的应用 对于以太坊来说,2018年是专注底层架构之年.今年很多早期参与者会测试网络极限,并且重新关注以太坊的扩容技术. 以太坊仍然 ...

  10. Arcengine效率探究之一——属性的读取(转载)

    http://blog.csdn.net/lk103852503/article/details/6566652 在写一个对属性表的统计函数时,发现执行速度奇慢无比,百思不得其解,其实算法并不复杂,后 ...