【刷题】LOJ 6012 「网络流 24 题」分配问题
题目描述
有 \(n\) 件工作要分配给 \(n\) 个人做。第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(c_{ij}\) 。试设计一个将 \(n\) 件工作分配给 \(n\) 个人做的分配方案,使产生的总效益最大。
输入格式
文件的第 \(1\) 行有 \(1\) 个正整数 \(n\) ,表示有 \(n\) 件工作要分配给 \(n\) 个人做。接下来的 \(n\) 行中,每行有 \(n\) 个整数 \(c_{ij}\) ,表示第 \(i\) 个人做第 \(j\) 件工作产生的效益为 \(c_{ij}\) 。
输出格式
两行分别输出最小总效益和最大总效益。
样例
样例输入
5
2 2 2 1 2
2 3 1 2 4
2 0 1 1 1
2 3 4 3 3
3 2 1 2 1
样例输出
5
14
数据范围与提示
1 \leq n \leq 100
题解
又是水题一道
按照题目连边,跑两边费用流就好了
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=200+10,MAXM=MAXN*MAXN+10,inf=0x3f3f3f3f;
int n,G[MAXN][MAXN],e=1,beg[MAXN],cur[MAXN],level[MAXN],clk,vis[MAXN],cap[MAXM<<1],nex[MAXM<<1],to[MAXM<<1],was[MAXM<<1],answas,p[MAXN],s,t;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int k)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=k;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-k;
}
inline void build(int opt)
{
e=1;memset(beg,0,sizeof(beg));answas=0;
for(register int i=1;i<=n;++i)insert(s,i,1,0),insert(i+n,t,1,0);
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)insert(i,j+n,1,opt*G[i][j]);
}
inline bool bfs()
{
memset(level,inf,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int MCMF()
{
int res=0;
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
int main()
{
read(n);
s=n+n+1,t=s+1;
for(register int i=1;i<=n;++i)
for(register int j=1;j<=n;++j)read(G[i][j]);
build(1);MCMF();write(answas,'\n');
build(-1);MCMF();write(-answas,'\n');
return 0;
}
【刷题】LOJ 6012 「网络流 24 题」分配问题的更多相关文章
- 2018.10.14 loj#6012. 「网络流 24 题」分配问题(费用流)
传送门 费用流水题. 依然是照着题意模拟建边就行了. 为了练板子又重新写了一遍费用流. 代码: #include<bits/stdc++.h> #define N 305 #define ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
- Libre 6012 「网络流 24 题」分配问题 (网络流,费用流)
Libre 6012 「网络流 24 题」分配问题 (网络流,费用流) Description 有n件工作要分配给n个人做.第i个人做第j件工作产生的效益为\(c_{ij}\).试设计一个将n件工作分 ...
- [luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划
[luogu_P1251][LOJ#6008]「网络流 24 题」餐巾计划 试题描述 一个餐厅在相继的 \(N\) 天里,第 \(i\) 天需要 \(R_i\) 块餐巾 \((i=l,2,-,N)\) ...
- [LOJ#6002]「网络流 24 题」最小路径覆盖
[LOJ#6002]「网络流 24 题」最小路径覆盖 试题描述 给定有向图 G=(V,E).设 P 是 G 的一个简单路(顶点不相交)的集合.如果 V 中每个顶点恰好在 P 的一条路上,则称 P 是 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- loj #6013. 「网络流 24 题」负载平衡
#6013. 「网络流 24 题」负载平衡 题目描述 G 公司有 n nn 个沿铁路运输线环形排列的仓库,每个仓库存储的货物数量不等.如何用最少搬运量可以使 n nn 个仓库的库存数量相同.搬运货物时 ...
- loj #6122. 「网络流 24 题」航空路线问题
#6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...
- loj #6121. 「网络流 24 题」孤岛营救问题
#6121. 「网络流 24 题」孤岛营救问题 题目描述 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂, ...
随机推荐
- 【本地服务器】json-server搭建本地https服务器(windows)
(一)用json-server搭建简单的服务器 (搭建出来的服务器地址为localhost:3000) 1.新建Mockjson文件夹,进入该文件夹目录,运行命令 npm install -g jso ...
- WPF绑定文本时使用指定格式文本
原文:WPF绑定文本时使用指定格式文本 Text="{Binding PlayletModel.characters,StringFormat=Cast : {0}}" Strin ...
- 设计模式 笔记 中介者模式 Mediator
//---------------------------15/04/27---------------------------- //Mediator 中介者模式----对象行为型模式 /* 1:意 ...
- effective c++ 笔记 (9-12)
//---------------------------15/03/29---------------------------- //#9 绝不在构造和析构过程中调头virtual函数 { / ...
- Phabricator 在 centos 系统下发送 Email的配置
前言 phabricator 配置email 其实很简单,配好smtp 服务器.端口.协议.用户名和登陆密码,但过程却好麻烦. 开始时跟着官网配 sendmail ,又 google 又 baidu, ...
- iOSPush自动隐藏tabbar
只需要在UITabBarController添加控制器的时候调用YZNav初始化,就可以实现tabbar的自动隐藏了. 直接上github地址:https://github.com/YouZhiZhe ...
- 简单模拟flume
NetCat方式: 远程访问的方式进行消息传递 配置一个Agent,主要配置三个组件: source, channel, sink 上图中为什么channel会带s,变成channels? 可以绑定多 ...
- BCompare破解方法
1.删除 BCUnrar.dll 文件,重启软件. 备注:使用everything搜索BCUnrar.dll
- c语言数字图像处理(三):仿射变换
仿射变换及坐标变换公式 几何变换改进图像中像素间的空间关系.这些变换通常称为橡皮模变换,因为它们可看成是在一块橡皮模上印刷一幅图像,然后根据预定的一组规则拉伸该薄膜.在数字图像处理中,几何变换由两个基 ...
- 微软职位内部推荐-Senior Software Engineer-Eco
微软近期Open的职位: The MOD Ecosystem team is dedicated to expanding the reach and value of Office by enabl ...