题目大意:给定一个长度为 N 的序列,求带权区间最小覆盖。

题解:设 \(dp[i]\) 表示从左端点到 i 的最小权值是多少,则状态转移为:\(dp[e[i].ed]=min\{dp[j],j\in[e[i].st-1,e[i].ed-1] \}\),初始化 \(dp[st-1]=0\) 即可。因此,这里用线段树来维护区间最小值即可。不过这道题需要注意的点有很多,首先开始区间的下标从 0 开始,因此需要注意避免下标为负数的情况,我采用了所有坐标加 1 的写法,结尾要注意所给区间排序之后末尾可能出现大于给定的结尾的情况,线段树需要维护两者较大的值。其次是状态转移时,线段树中的 modify 函数并不是直接修改值,而是需要比较一下大小再决定是否修改。(在这里WA了好长时间QAQ)

代码如下

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
const int maxn=1e5;
const int inf=0x3f3f3f3f; inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
} struct node{
#define ls t[k].lc
#define rs t[k].rc
int lc,rc,mi;
}t[maxn<<1];
int tot=1;
int n,st,ed,ans,dp[maxn],l_b,r_b;
struct seg{
int st,ed,w;
bool operator<(const seg& y)const{return this->ed<y.ed;}
}e[10010]; inline void pushup(int k){t[k].mi=min(t[ls].mi,t[rs].mi);} void build(int k,int l,int r){
if(l==r){t[k].mi=dp[l];return;}
int mid=l+r>>1;
ls=++tot,build(ls,l,mid);
rs=++tot,build(rs,mid+1,r);
pushup(k);
} void modify(int k,int l,int r,int pos,int val){
if(l==r){t[k].mi=min(t[k].mi,val);return;}
int mid=l+r>>1;
if(pos<=mid)modify(ls,l,mid,pos,val);
else modify(rs,mid+1,r,pos,val);
pushup(k);
} int query(int k,int l,int r,int x,int y){
if(l==x&&r==y)return t[k].mi;
int mid=l+r>>1;
if(y<=mid)return query(ls,l,mid,x,y);
else if(x>mid)return query(rs,mid+1,r,x,y);
else return min(query(ls,l,mid,x,mid),query(rs,mid+1,r,mid+1,y));
} void read_and_parse(){
memset(dp,0x3f,sizeof(dp));
n=read(),st=read()+1,ed=read()+1;//偏移量
for(int i=1;i<=n;i++){
scanf("%d%d%d",&e[i].st,&e[i].ed,&e[i].w);
++e[i].st,++e[i].ed;
}
sort(e+1,e+n+1);
r_b=max(ed,e[n].ed),l_b=st-1;
dp[st-1]=0;
build(1,l_b,r_b);
} void solve(){
for(int i=1;i<=n;i++){
int mi=query(1,l_b,r_b,e[i].st-1,e[i].ed-1);
if(mi==inf)continue;
dp[e[i].ed]=mi+e[i].w;
modify(1,l_b,r_b,e[i].ed,dp[e[i].ed]);
}
ans=inf;
for(int i=ed;i<=r_b;i++)ans=min(ans,dp[i]);
if(ans==inf)puts("-1");
else printf("%d\n",ans);
} int main(){
read_and_parse();
solve();
return 0;
}

【POJ3171】Cleaning Shifts 带权区间最小覆盖的更多相关文章

  1. POJ3171 Cleaning Shifts DP,区间覆盖最值

    题目大意.N个区间覆盖[T1,T2]及相应的代价S,求从区间M到E的所有覆盖的最小代价是多少. (1 <= N <= 10,000).(0 <= M <= E <= 86 ...

  2. BZOJ2298: [HAOI2011]problem a(带权区间覆盖DP)

    Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1747  Solved: 876[Submit][Status][Discuss] Descripti ...

  3. 洛谷P2439 [SDOI2005]阶梯教室设备利用(带权区间覆盖)

    题目背景 我们现有许多演讲要在阶梯教室中举行.每一个演讲都可以用唯一的起始和终止时间来确定,如果两个演讲时间有部分或全部重复,那么它们是无法同时在阶级教室中举行的.现在我们想要尽最大可能的利用这个教室 ...

  4. poj3171 Cleaning Shifts【线段树(单点修改区间查询)】【DP】

    Cleaning Shifts Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4422   Accepted: 1482 D ...

  5. poj3171 Cleaning Shifts[DP]

    https://vjudge.net/problem/POJ-3171.(有价值的区间全覆盖问题) (lyd例题)朴素DP很好想,$f[i]$表示将右端点从小到大排序后从$L$(要求覆盖的大区间)到第 ...

  6. [USACO2005][POJ3171]Cleaning Shifts(DP+线段树优化)

    题目:http://poj.org/problem?id=3171 题意:给你n个区间[a,b],每个区间都有一个费用c,要你用最小的费用覆盖区间[M,E] 分析:经典的区间覆盖问题,百度可以搜到这个 ...

  7. POJ 2376 Cleaning Shifts (贪心,区间覆盖)

    题意:给定1-m的区间,然后给定n个小区间,用最少的小区间去覆盖1-m的区间,覆盖不了,输出-1. 析:一看就知道是贪心算法的区间覆盖,主要贪心策略是把左端点排序,如果左端点大于1无解,然后, 忽略小 ...

  8. poj3171 Cleaning Shifts

    传送门 题目大意 有一个大区间和n个小区间,每个小区间都有一个代价,求最少付出多少代价可以使得小区间完全覆盖大区间. 分析为了方便起见我们先将s变为2,其它的位置都对应更改以便后期处理.我们考虑以t1 ...

  9. POJ2376 Cleaning Shifts

    题意 POJ2376 Cleaning Shifts 0x50「动态规划」例题 http://bailian.openjudge.cn/practice/2376 总时间限制: 1000ms 内存限制 ...

随机推荐

  1. 20155333 《网络对抗》Exp4 恶意代码分析

    20155333 <网络对抗>Exp4 恶意代码分析 基础问题回答 1.如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪 ...

  2. 在ListBoxItem的样式中的button传参,把当前选中项传递到命令的方法

    原文:在ListBoxItem的样式中的button传参,把当前选中项传递到命令的方法 前端页面: <Style x:Key="ThumbItemStyle" TargetT ...

  3. Git中使用amend解决提交冲突

    问题描述       场景:当你提交的时候,发现跟要合并的流有冲突,你需要解决完冲突再次提交. 如果在SVN时代,你可以直接在本地解决完冲突再提交就可以了,因为SVN会把正确的代码先提交到服务器,至于 ...

  4. [Deep-Learning-with-Python]基于Keras的房价预测

    预测房价:回归问题 回归问题预测结果为连续值,而不是离散的类别. 波士顿房价数据集 通过20世纪70年代波士顿郊区房价数据集,预测平均房价:数据集的特征包括犯罪率.税率等信息.数据集只有506条记录, ...

  5. 设计模式学习---UML常见关系的实现

    一.UML基本构造 UML的基本构造含3种: (1) 事物(4种):结构事物,行为事物,分组事物,注释事物 (2) 关系(4种):泛化关系,实现关系,依赖关系,关联关系 (3) 图(10种):用例图, ...

  6. ZeroMQ使用汇总

    ZeroMQ,史上最快的消息队列 —– ZMQ的学习和研究 ZeroMQ 的模式 [架构] ZeroMQ 深度探索(一)  消息队列ZeroMQ 服务端使用流程: void* m_Context; v ...

  7. [CF1009G]Allowed Letters[贪心+霍尔定理]

    题意 给你一个长为 \(n\) 的串,字符集为 \(a,b,c,d,e,f\) .你可以将整个串打乱之后重新放置,但是某些位置上有一些限制:必须放某个字符集的字符.问字典序最小的串,如果无解输出 &q ...

  8. JavaScript快速入门-ECMAScript对象介绍

    一.概念介绍 在 ECMAScript 中,所有对象并非同等创建的.一般来说,可以创建并使用的对象有三种:本地对象.内置对象和宿主对象. 要理解这三种对象,先要理解宿主环境. 1.宿主环境 一般宿主环 ...

  9. C#杂乱知识汇总

    :first-child{margin-top:0!important}.markdown-body>:last-child{margin-bottom:0!important}.markdow ...

  10. spring boot 2.0 源码分析(五)

    在上一篇文章中我们详细分析了spring boot是如何准备上下文环境的,今天我们来看一下run函数剩余的内容.还是先把run函数贴出来: /** * Run the Spring applicati ...