Description

在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足。

考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表程序中出现的变量,给定n个形如xi=xj或xi≠xj的变量相等/不等的约束条件,请判定是否可以分别为每一个变量赋予恰当的值,使得上述所有约束条件同时被满足。例如,一个问题中的约束条件为:x1=x2,x2=x3,x3=x4,x1≠x4,这些约束条件显然是不可能同时被满足的,因此这个问题应判定为不可被满足。

现在给出一些约束满足问题,请分别对它们进行判定。

Input

输入文件的第1行包含1个正整数t,表示需要判定的问题个数。注意这些问题之间是相互独立的。

对于每个问题,包含若干行:

第1行包含1个正整数n,表示该问题中需要被满足的约束条件个数。

接下来n行,每行包括3个整数i,j,e,描述1个相等/不等的约束条件,相邻整数之间用单个空格隔开。若e=1,则该约束条件为xi=xj;若e=0,则该约束条件为xi≠xj。

Output

输出文件包括t行。

输出文件的第k行输出一个字符串“YES”或者“NO”(不包含引号,字母全部大写),“YES”表示输入中的第k个问题判定为可以被满足,“NO”表示不可被满足。

Sample Input

2

2

1 2 1

1 2 0

2

1 2 1

2 1 1

Sample Output

NO

YES

HINT

在第一个问题中,约束条件为:x1=x2,x1≠x2。这两个约束条件互相矛盾,因此不可被同时满足。

在第二个问题中,约束条件为:x1=x2,x2=x1。这两个约束条件是等价的,可以被同时满足。

1≤n≤1000000

1≤i,j≤1000000000

Solution

水题一道

由于等号具有连续性,所以先处理所有相等的限制,用并查集维护哪些是相等的

然后判断不等号,如果有不等号两边在同一并查集内,显然就不行

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=400000+10;
int T,n,fa[MAXN],lt;
std::vector<int> V;
std::map<int,int> M;
struct node{
int x,y,opt;
inline bool operator < (const node &A) const {
return opt>A.opt;
};
};
node limit[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void discretization()
{
V.clear();M.clear();
REP(i,1,n)V.push_back(limit[i].x),V.push_back(limit[i].y);
std::sort(V.begin(),V.end());
V.erase(std::unique(V.begin(),V.end()),V.end());
REP(i,0,V.size()-1)M[V[i]]=i+1;lt=V.size();
REP(i,1,n)limit[i].x=M[limit[i].x],limit[i].y=M[limit[i].y];
}
inline int found(int x)
{
if(fa[x]!=x)fa[x]=found(fa[x]);
return fa[x];
}
int main()
{
read(T);
while(T--)
{
read(n);
REP(i,1,n)
{
int x,y,opt;read(x);read(y);read(opt);
limit[i]=(node){x,y,opt};
}
discretization();
std::sort(limit+1,limit+n+1);
REP(i,1,lt)fa[i]=i;
int mk=1;
REP(i,1,n)
{
int u=limit[i].x,v=limit[i].y;
if(limit[i].opt)fa[found(u)]=found(v);
else if(found(u)==found(v))
{
mk=0;
break;
}
}
puts(mk?"YES":"NO");
}
return 0;
}

【刷题】BZOJ 4195 [Noi2015]程序自动分析的更多相关文章

  1. bzoj 4195: [Noi2015]程序自动分析

    4195: [Noi2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,…代表 ...

  2. BZOJ 4195: [Noi2015]程序自动分析 并查集 + 离散化 + 水题

    TM 读错题了...... 我还以为是要动态询问呢,结果是统一处理完了再询问...... 幼儿园题,不解释. Code: #include<bits/stdc++.h> #define m ...

  3. BZOJ 4195: [Noi2015]程序自动分析 并查集+离散化

    LUOGU 1955BZOJ 4195 题目描述 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3...代表程序中出现的变量 ...

  4. BZOJ——4195: [Noi2015]程序自动分析

    http://www.lydsy.com/JudgeOnline/problem.php?id=4195 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: ...

  5. BZOJ 4195: [Noi2015]程序自动分析 [并查集 离散化 | 种类并查集WA]

    题意: 给出若干相等和不等关系,判断是否可行 woc NOI考这么傻逼的题飞快打了一个种类并查集交上了然后爆零... 发现相等和不等看错了异或一下再叫woc90分 然后发现md$a \neq b, a ...

  6. bzoj 4195: [Noi2015]程序自动分析【并查集】

    等于有传递性,所以hash一下把等于用并查集连起来,然后再判断不等于是否合法即可 #include<iostream> #include<cstdio> #include< ...

  7. BZOJ4195 [Noi2015]程序自动分析(离散化+并查集)

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 689  Solved: 296 [Submit][Sta ...

  8. BZOJ4195 NOI2015 程序自动分析

    4195: [Noi2015]程序自动分析 Time Limit: 10 Sec Memory Limit: 512 MB Description 在实现程序自动分析的过程中,常常需要判定一些约束条件 ...

  9. [NOI2015]程序自动分析(并查集,离散化)

    [NOI2015]程序自动分析 Description 在实现程序自动分析的过程中,常常需要判定一些约束条件是否能被同时满足. 考虑一个约束满足问题的简化版本:假设x1,x2,x3,-代表程序中出现的 ...

随机推荐

  1. odoo 打印格式中 打印第一个数据默认

    <table style="width:100%;"> <tr> <td style="word-wrap:break-word;width ...

  2. 2017-2018-2 20155224『网络对抗技术』Exp7:网络欺诈防范

    基础问题回答 问:通常在什么场景下容易受到DNS spoof攻击? 同一局域网下,以及各种公共网络. 问:在日常生活工作中如何防范以上两攻击方法? 答:DNS欺骗攻击是很难防御的,因为这种攻击大多数本 ...

  3. 2017-2018-2 20155224『网络对抗技术』Exp5:MSF基础应用

    基础问题回答 用自己的话解释什么是exploit,payload,encode? exploit就相当于是载具,将真正要负责攻击的代码传送到靶机中,我觉得老师上课举的火箭和卫星的例子非常形象,火箭只是 ...

  4. 20155234 exp4 恶意代码分析

    实验4 恶意代码分析 系统运行监控 Schtasks 先建立一个netstat20155234.txt文件,在文件中输入 date /t >> c:\netstat20155234.txt ...

  5. Android开发——Fragment知识整理(一)

    0.  前言 Fragment,顾名思义是片段的意思,可以把Fragment当成Activity的一个组成部分,甚至Activity的界面可以完全有不同的Fragment组成.Fragment需要被嵌 ...

  6. CTE 递归查询全解

    TSQL脚本能实现递归查询,用户使用共用表表达式 CTE(Common Table Expression),只需要编写少量的代码,就能实现递归查询.本文详细介绍CTE递归调用的特性和使用示例,递归查询 ...

  7. Flutter - ListView禁止用户上下滑动

    ListView禁止用户上下滑动可以使用physics属性 physics: const NeverScrollableScrollPhysics()

  8. kubernetes部署mysql

    第一章 部署K8S集群 https://www.cnblogs.com/zoulixiang/p/9504324.html 第二章 1.新建mysql-rc.yaml vi mysql-rc.yaml ...

  9. CoreDNS Plugins ---> hosts

    需求 kubernetes集群外部有少量服务,kubernetes集群内部pod需要通过服务所在的主机的hostname访问服务. 解决方案 通过coredns的hosts插件配置kubernetes ...

  10. Eclipse,代码中有错误,项目中却不显示红叉

    ***修改eclipse 代码提示级别1.单个项目修改项目上右键-->properties-->java compiler-->building-->enable projec ...