http://acm.hdu.edu.cn/showproblem.php?pid=5013

m个游客,n座城市(m, n <= 16), 每个人从1走到n, 每次有一定概率停在原地,然后以后就不前进了。一个人到过一个城会得到一定的愉悦度,对于相邻的两座城,会额外产生Cj / Cj - 1 * Hj的愉悦度,Cj是到过j城的人数,Hj是到过j城的人在这里获得的愉悦度之和。求期望的总愉悦度。

根据题解给出的解法

http://blog.csdn.net/oilover/article/details/39526899

需要跑3s左右

优化成纯dp能变成78ms,但是看不懂别人的代码...

根据期望的线性性,分别求每个人每天的值的期望



设f[i][j][x][y]表示第i天,前j个人,前一天x,当前天y的概率



设g[i][j][x][y]表示第i天,前j个人,前一天x,当前天y的期望



那么

f[i][j][x][y]=f[i][j-1][x][y]*(1-p[j]^(i-2))+f[i][j-1][x-1][y]*p[j]^(i-2)*(1-p[j])+f[i][j-1][x-1][y-1]*p[j]^(i-1)

g[i][j][x][y]=g[i][j-1][x][y]*(1-p[j]^(i-2))+g[i][j-1][x-1][y]*p[j]^(i-2)*(1-p[j])+(g[i][j-1][x-1][y-1]+f[i][j-1][x-1][y-1]*h[j][i])*p[j]^(i-1)

状态方程不懂,求各位大神解释..

#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <string>
#include <queue>
#include <stack>
#include <iostream>
#include <algorithm>
using namespace std;
#define RD(x) scanf("%d",&x)
#define RD2(x,y) scanf("%d%d",&x,&y)
#define RD3(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define clr0(x) memset(x,0,sizeof(x))
typedef long long LL;
const int maxn = 20;
int n, m;
double p[maxn][maxn],h[maxn][maxn],f[maxn][maxn][maxn],g[maxn][maxn][maxn]; int main() {
while (~RD2(m,n)) {
for (int i = 1; i <= m; i++) {
scanf("%lf", &p[i][1]);
p[i][0] = 1.0;
for (int j = 2; j <= n; j++) {
p[i][j] = p[i][j - 1] * p[i][1];
}
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
scanf("%lf", &h[i][j]);
}
}
clr0(f),clr0(g); double ans = 0;
for (int i = 2; i <= n; i++) {
f[i][0][0] = 1;
for (int j = 1; j <= m; j++) {
for (int x = m; x >= 0; x--) {
for (int y = x; y >= 0; y--) {
f[i][x][y] *= (1.0 - p[j][i - 2]);
if (x > 0) {
f[i][x][y] += f[i][x - 1][y] * p[j][i - 2] * (1.0 - p[j][1]);
if (y > 0) {
f[i][x][y] += f[i][x - 1][y - 1] * p[j][i - 1];
}
}
g[i][x][y] *= (1.0 - p[j][i - 2]);
if (x > 0) {
g[i][x][y] += g[i][x - 1][y] * p[j][i - 2] * (1.0 - p[j][1]);
if (y > 0) {
g[i][x][y] += (g[i][x - 1][y - 1] + f[i][x - 1][y - 1] * h[j][i]) * p[j][i - 1];
}
}
}
}
}
for (int x = 1; x <= m; x++) {
for (int y = 1; y <= x; y++) {
ans += g[i][x][y] * ((double)y / x + 1.0);
}
}
}
for (int i = 1; i <= m; i++) {
ans += h[i][1];
}
printf("%.10f\n", ans);
} return 0;
}

hdu 5013 优化疑问+dp的更多相关文章

  1. fwt优化+树形DP HDU 5909

    //fwt优化+树形DP HDU 5909 //见官方题解 // BestCoder Round #88 http://bestcoder.hdu.edu.cn/ #include <bits/ ...

  2. 2017多校第4场 HDU 6078 Wavel Sequence DP

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6078 题意:求两个序列的公共波形子序列的个数. 解法: 类似于最长公共上升子序列,对于每个i,只考虑存 ...

  3. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  4. 队列优化和斜率优化的dp

    可以用队列优化或斜率优化的dp这一类的问题为 1D/1D一类问题 即状态数是O(n),决策数也是O(n) 单调队列优化 我们来看这样一个问题:一个含有n项的数列(n<=2000000),求出每一 ...

  5. hdu 2296 aC自动机+dp(得到价值最大的字符串)

    Ring Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  6. HDU 4778 状压DP

    一看就是状压,由于是类似博弈的游戏.游戏里的两人都是绝对聪明,那么先手的选择是能够确定最终局面的. 实际上是枚举最终局面情况,0代表是被Bob拿走的,1为Alice拿走的,当时Alice拿走且满足变换 ...

  7. HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解)

    HDOJ(HDU).3466 Dividing coins ( DP 01背包 无后效性的理解) 题意分析 要先排序,在做01背包,否则不满足无后效性,为什么呢? 等我理解了再补上. 代码总览 #in ...

  8. HDOJ(HDU).2546 饭卡(DP 01背包)

    HDOJ(HDU).2546 饭卡(DP 01背包) 题意分析 首先要对钱数小于5的时候特别处理,直接输出0.若钱数大于5,所有菜按价格排序,背包容量为钱数-5,对除去价格最贵的所有菜做01背包.因为 ...

  9. HDOJ(HDU).2602 Bone Collector (DP 01背包)

    HDOJ(HDU).2602 Bone Collector (DP 01背包) 题意分析 01背包的裸题 #include <iostream> #include <cstdio&g ...

随机推荐

  1. PAT 1018 锤子剪刀布(20)

    1018 锤子剪刀布 (20)(20 分) 大家应该都会玩"锤子剪刀布"的游戏:两人同时给出手势,胜负规则如图所示: 现给出两人的交锋记录,请统计双方的胜.平.负次数,并且给出双方 ...

  2. hdu 5461(2015沈阳网赛 简单暴力) Largest Point

    题目;http://acm.hdu.edu.cn/showproblem.php?pid=5461 题意就是在数组中找出a*t[i]*t[i]+b*t[j]的最大值,特别注意的是这里i和i不能相等,想 ...

  3. iOS.AutoLayout.2.CustomView-with-AutoLayout

    Custom View Which Support AutoLayout 创建支持AutoLayout的Custom View AutoLayout 通过使view更加的自组织来减轻controlle ...

  4. NGS基础 - 高通量测序原理

    NGS基础 - 高通量测序原理 原创: 赑屃 生信宝典 2017-07-23 NGS系列文章包括NGS基础.转录组分析.ChIP-seq分析.DNA甲基化分析.重测序分析五部分内容. NGS基础系列文 ...

  5. Node.js v7.4.0 Documentation Addons

    https://nodejs.org/docs/latest/api/addons.html Node.js Addons are dynamically-linked shared objects, ...

  6. 【已处理完】Centos 6.5版本,df -h出来的容量与du -sh的容量不对应是怎么会事呢?

    问题如题,df -h 出来的容量与du -sh 查看的容量信息不一样,是那里出了问题了吗? 下面分别是du -sh *与df -h出来的结果 [root@mail /]# du -sh * 6.2M ...

  7. POJ 2449Remmarguts' Date 第K短路

    Remmarguts' Date Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 29625   Accepted: 8034 ...

  8. 无法将参数 1 从“WCHAR [256]”转换为“const char *”

    https://blog.csdn.net/zhangxuechao_/article/details/81064037 字符集 修改为未设置 然后再修改回来unicode  居然好了

  9. Tomcat配置Solr4.8

    简介:Solr是一个独立的企业级搜索应用服务器,它对外提供类似于Web-service的API接口.用户可以通过http请求,向搜索引擎服务器提交一定格式的XML文件,生成索引:也可以通过Http G ...

  10. 华为QOS原理及配置

    http://www.tudou.com/programs/view/GWCiHfWC9FI/ FLASH : http://www.tudou.com/v/GWCiHfWC9FI/&reso ...