2018.11.18 bzoj2194: 快速傅立叶之二(fft)
传送门
模板题。
将bbb序列反过来然后上fftfftfft搞定。
代码:
#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
int ans=0;
char ch=getchar();
while(!isdigit(ch))ch=getchar();
while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
return ans;
}
const int N=4e5+5;
const double pi=acos(-1.0);
struct Complex{
double x,y;
inline Complex operator+(const Complex&b){return (Complex){x+b.x,y+b.y};}
inline Complex operator-(const Complex&b){return (Complex){x-b.x,y-b.y};}
inline Complex operator*(const Complex&b){return (Complex){x*b.x-y*b.y,x*b.y+y*b.x};}
inline Complex operator/(const double&b){return (Complex){x/b,y/b};}
}a[N],b[N];
int n,pos[N],lim,tim;
inline void init(){
lim=1,tim=0;
while(lim<=n*2)lim<<=1,++tim;
for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline void fft(Complex *a,int type){
for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
for(ri mid=1;mid<lim;mid<<=1){
Complex wn=(Complex){cos(pi/mid),type*sin(pi/mid)};
for(ri j=0,len=mid<<1;j<lim;j+=len){
Complex w=(Complex){1,0};
for(ri k=0;k<mid;++k,w=w*wn){
Complex a0=a[j+k],a1=w*a[j+k+mid];
a[j+k]=a0+a1,a[j+k+mid]=a0-a1;
}
}
}
if(type==-1)for(ri i=0;i<lim;++i)a[i]=a[i]/lim;
}
int main(){
freopen("lx.in","r",stdin);
n=read()-1,init();
for(ri i=0;i<=n;++i)a[i].x=read(),b[n-i].x=read();
fft(a,1),fft(b,1);
for(ri i=0;i<lim;++i)a[i]=a[i]*b[i];
fft(a,-1);
for(ri i=n;i<=n*2;++i)printf("%d\n",(int)(a[i].x+0.5));
return 0;
}
2018.11.18 bzoj2194: 快速傅立叶之二(fft)的更多相关文章
- BZOJ2194:快速傅立叶之二(FFT)
Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...
- bzoj2194 快速傅立叶之二 ntt
bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...
- [bzoj2194]快速傅立叶之二_FFT
快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...
- bzoj 2194: 快速傅立叶之二 -- FFT
2194: 快速傅立叶之二 Time Limit: 10 Sec Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...
- bzoj2194: 快速傅立叶之二
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- 【bzoj2194】快速傅立叶之二 FFT
题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...
- bzoj千题计划256:bzoj2194: 快速傅立叶之二
http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...
- BZOJ2194: 快速傅立叶之二(NTT,卷积)
Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1776 Solved: 1055[Submit][Status][Discuss] Descript ...
- BZOJ2194 快速傅立叶之二 【fft】
题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...
随机推荐
- Wannafly挑战赛14 C.可达性(tarjan缩点)
题目描述 给出一个 0 ≤ N ≤ 105 点数.0 ≤ M ≤ 105 边数的有向图, 输出一个尽可能小的点集,使得从这些点出发能够到达任意一点,如果有多个这样的集合,输出这些集合升序排序后字典序最 ...
- [剑指Offer]6-从尾到头打印链表
典型的后进先出,可以借助栈,也可以使用递归. 考虑到若链表过长递归可能造成函数调用栈溢出,所以使用栈更好. 注意stack无遍历操作,全部用push(),pop(),top()完成. 以下创建列表胡乱 ...
- CQ3
super.bark(); 不要第一个括号 Write a concrete meow( ) method 抽象类实例化后要加一个实例化的方法. 抽象类里可以没有抽象方法. What does ...
- 我的第一个博客——Fragment遇到的问题
最近项目中使用fragment时遇到了一些问题: 1.fragment的刷新问题. 解决:我的情况是有多个fragment时,只需要刷新其中几个界面.之前我在网上看到的一些方法.如下: 首先在Adap ...
- ios 错误纪录
.self.出不来的原因 Member reference type 'struct objc_class *' is a pointer; maybe you meant to use '-> ...
- mysql中各种join连表查询总结
通常我们需要连接多个表查询数据,以获取想要的结果. 一.连接可以分为三类: (1) 内连接:join,inner join (2) 外连接:left join,left outer join,righ ...
- LIS LCS 最长上升子序列 最长公共子序列 ...
最长上升子序列,问题定义:http://blog.csdn.net/chenwenshi/article/details/6027086 代码: public static void getData( ...
- pycharm 出现Process finished with exit code 0 或 Process finished with exit code -1
Process finished with exit code 0 意味着你的程序正常执行完毕并退出. 可以科普一下exit code,在大部分编程语言中都适用: exit code 0 表示程序执行 ...
- html标签一
<body></body> 网页内容 <p></p>段落 <h1></h1> ----<h6></h6> ...
- 优化myeclipse启动速度以及解决内存不足问题
解决myeclipse内存不足问题: 使用 MyEclipse 开发项目后,随着项目文件的增多,以及运行时间的增加,实际上 MyEclipse 所消耗的内存是会一直增大的,有的时候会出现 MyEcli ...