传送门

模板题。

将bbb序列反过来然后上fftfftfft搞定。

代码:

#include<bits/stdc++.h>
#define ri register int
using namespace std;
inline int read(){
	int ans=0;
	char ch=getchar();
	while(!isdigit(ch))ch=getchar();
	while(isdigit(ch))ans=(ans<<3)+(ans<<1)+(ch^48),ch=getchar();
	return ans;
}
const int N=4e5+5;
const double pi=acos(-1.0);
struct Complex{
	double x,y;
	inline Complex operator+(const Complex&b){return (Complex){x+b.x,y+b.y};}
	inline Complex operator-(const Complex&b){return (Complex){x-b.x,y-b.y};}
	inline Complex operator*(const Complex&b){return (Complex){x*b.x-y*b.y,x*b.y+y*b.x};}
	inline Complex operator/(const double&b){return (Complex){x/b,y/b};}
}a[N],b[N];
int n,pos[N],lim,tim;
inline void init(){
	lim=1,tim=0;
	while(lim<=n*2)lim<<=1,++tim;
	for(ri i=0;i<lim;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(tim-1));
}
inline void fft(Complex *a,int type){
	for(ri i=0;i<lim;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
	for(ri mid=1;mid<lim;mid<<=1){
		Complex wn=(Complex){cos(pi/mid),type*sin(pi/mid)};
		for(ri j=0,len=mid<<1;j<lim;j+=len){
			Complex w=(Complex){1,0};
			for(ri k=0;k<mid;++k,w=w*wn){
				Complex a0=a[j+k],a1=w*a[j+k+mid];
				a[j+k]=a0+a1,a[j+k+mid]=a0-a1;
			}
		}
	}
	if(type==-1)for(ri i=0;i<lim;++i)a[i]=a[i]/lim;
}
int main(){
	freopen("lx.in","r",stdin);
	n=read()-1,init();
	for(ri i=0;i<=n;++i)a[i].x=read(),b[n-i].x=read();
	fft(a,1),fft(b,1);
	for(ri i=0;i<lim;++i)a[i]=a[i]*b[i];
	fft(a,-1);
	for(ri i=n;i<=n*2;++i)printf("%d\n",(int)(a[i].x+0.5));
	return 0;
}

2018.11.18 bzoj2194: 快速傅立叶之二(fft)的更多相关文章

  1. BZOJ2194:快速傅立叶之二(FFT)

    Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非 ...

  2. bzoj2194 快速傅立叶之二 ntt

    bzoj2194 快速傅立叶之二 链接 bzoj 思路 对我这种和式不强的人,直接转二维看. 发现对\(C_k\)贡献的数对(i,j),都是右斜对角线. 既然贡献是对角线,我们可以利用对角线的性质了. ...

  3. [bzoj2194]快速傅立叶之二_FFT

    快速傅立叶之二 bzoj-2194 题目大意:给定两个长度为$n$的序列$a$和$b$.求$c$序列,其中:$c_i=\sum\limits_{j=i}^{n-1} a_j\times b_{j-i} ...

  4. bzoj 2194: 快速傅立叶之二 -- FFT

    2194: 快速傅立叶之二 Time Limit: 10 Sec  Memory Limit: 259 MB Description 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k & ...

  5. bzoj2194: 快速傅立叶之二

    #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...

  6. 【bzoj2194】快速傅立叶之二 FFT

    题意:给定序列a,b,求序列c,\(c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\) Solution: \[ c(k)=\sum_{i=k}^{n-1}a(i)b(i-k)\\ c ...

  7. bzoj千题计划256:bzoj2194: 快速傅立叶之二

    http://www.lydsy.com/JudgeOnline/problem.php?id=2194 相乘两项的下标 的 差相同 那么把某一个反过来就是卷积形式 fft优化 #include< ...

  8. BZOJ2194: 快速傅立叶之二(NTT,卷积)

    Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1776  Solved: 1055[Submit][Status][Discuss] Descript ...

  9. BZOJ2194 快速傅立叶之二 【fft】

    题目 请计算C[k]=sigma(a[i]*b[i-k]) 其中 k < = i < n ,并且有 n < = 10 ^ 5. a,b中的元素均为小于等于100的非负整数. 输入格式 ...

随机推荐

  1. Wannafly挑战赛14 C.可达性(tarjan缩点)

    题目描述 给出一个 0 ≤ N ≤ 105 点数.0 ≤ M ≤ 105 边数的有向图, 输出一个尽可能小的点集,使得从这些点出发能够到达任意一点,如果有多个这样的集合,输出这些集合升序排序后字典序最 ...

  2. [剑指Offer]6-从尾到头打印链表

    典型的后进先出,可以借助栈,也可以使用递归. 考虑到若链表过长递归可能造成函数调用栈溢出,所以使用栈更好. 注意stack无遍历操作,全部用push(),pop(),top()完成. 以下创建列表胡乱 ...

  3. CQ3

    super.bark(); 不要第一个括号   Write a concrete meow( ) method 抽象类实例化后要加一个实例化的方法. 抽象类里可以没有抽象方法.   What does ...

  4. 我的第一个博客——Fragment遇到的问题

    最近项目中使用fragment时遇到了一些问题: 1.fragment的刷新问题. 解决:我的情况是有多个fragment时,只需要刷新其中几个界面.之前我在网上看到的一些方法.如下: 首先在Adap ...

  5. ios 错误纪录

    .self.出不来的原因 Member reference type 'struct objc_class *' is a pointer; maybe you meant to use '-> ...

  6. mysql中各种join连表查询总结

    通常我们需要连接多个表查询数据,以获取想要的结果. 一.连接可以分为三类: (1) 内连接:join,inner join (2) 外连接:left join,left outer join,righ ...

  7. LIS LCS 最长上升子序列 最长公共子序列 ...

    最长上升子序列,问题定义:http://blog.csdn.net/chenwenshi/article/details/6027086 代码: public static void getData( ...

  8. pycharm 出现Process finished with exit code 0 或 Process finished with exit code -1

    Process finished with exit code 0 意味着你的程序正常执行完毕并退出. 可以科普一下exit code,在大部分编程语言中都适用: exit code 0 表示程序执行 ...

  9. html标签一

    <body></body> 网页内容 <p></p>段落 <h1></h1> ----<h6></h6> ...

  10. 优化myeclipse启动速度以及解决内存不足问题

    解决myeclipse内存不足问题: 使用 MyEclipse 开发项目后,随着项目文件的增多,以及运行时间的增加,实际上 MyEclipse 所消耗的内存是会一直增大的,有的时候会出现 MyEcli ...