Codeforces Round #545 (Div. 1) 简要题解
这里没有翻译
Codeforces Round #545 (Div. 1)
T1
对于每行每列分别离散化,求出大于这个位置的数字的个数即可。
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(1005);
int n, m, a[maxn][maxn], mx1[maxn][maxn], mx2[maxn][maxn], q[maxn], len;
int main() {
int i, j, p;
scanf("%d%d", &n, &m);
for (i = 1; i <= n; ++i)
for (j = 1; j <= m; ++j) scanf("%d", &a[i][j]);
for (i = 1; i <= n; ++i) {
for (j = 1; j <= m; ++j) q[j] = a[i][j];
sort(q + 1, q + m + 1), len = unique(q + 1, q + m + 1) - q - 1;
for (j = 1; j <= m; ++j) {
p = lower_bound(q + 1, q + len + 1, a[i][j]) - q;
mx1[i][j] = p, mx2[i][j] = len - p;
}
}
for (i = 1; i <= m; ++i) {
for (j = 1; j <= n; ++j) q[j] = a[j][i];
sort(q + 1, q + n + 1), len = unique(q + 1, q + n + 1) - q - 1;
for (j = 1; j <= n; ++j) {
p = lower_bound(q + 1, q + len + 1, a[j][i]) - q;
mx1[j][i] = max(p, mx1[j][i]), mx2[j][i] = max(len - p, mx2[j][i]);
}
}
for (i = 1; i <= n; ++i, puts(""))
for (j = 1; j <= m; ++j) printf("%d ", mx1[i][j] + mx2[i][j]);
return 0;
}
T2
每次选择当前串的最长的 \(border\) 接上去即可
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(5e5 + 5);
int len1, len2, nxt[maxn], cnt0, cnt, cnt1, mx;
char s[maxn], t[maxn], ans[maxn];
int main() {
int i, j, len = 0;
scanf(" %s %s", s + 1, t + 1);
len1 = strlen(s + 1), len2 = strlen(t + 1);
for (i = 1; i <= len1; ++i) cnt0 += s[i] == '0';
for (i = 1; i <= len2; ++i) cnt += t[i] == '0';
if (len1 < len2 || cnt0 < cnt || len1 - cnt0 < len2 - cnt) return printf("%s\n", s + 1), 0;
for (i = 2, j = 0; i <= len2; ++i) {
while (j && t[j + 1] != t[i]) j = nxt[j];
if (t[j + 1] == t[i]) ++j;
nxt[i] = j;
}
for (i = 1; i <= len2; ++i) ans[i] = t[i];
len = len2, cnt1 = len1 - cnt0, cnt0 -= cnt, mx = nxt[len2], cnt1 -= len2 - cnt;
while (cnt0 && cnt1) {
for (i = mx + 1; i <= len2 && cnt1 && cnt0; ++i)
if (cnt0 - (t[i] == '0') >= 0 && cnt1 - (t[i] == '1') >= 0)
ans[++len] = t[i], cnt0 -= t[i] == '0', cnt1 -= t[i] == '1';
}
while (cnt0) ans[++len] = '0', --cnt0;
while (cnt1) ans[++len] = '1', --cnt1;
for (i = 1; i <= len1; ++i) putchar(ans[i]);
return puts(""), 0;
}
T3
拆点,对于一个点 \(x\),拆成 \((x,1),(x,2),...,(x,d)\),在原图中如果有边 \(x,y\) 则连边 \((x,i),(y,i\%d+1)\)。
可以发现如果 \((x,i)\) 能到 \((x,j)\),那么 \((x,j)\) 也一定能到达 \((x,i)\)。
所以 \((x,i),(x,j)\) 要么在同一个强连通分量里,要么不在同一条直链上。
所以直接缩点 \(DP\) 即可。
// Memory limit exceeded on test 73
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(5e6 + 5);
struct Edge { int to, next; };
int first[maxn], cnt, n, m, dd, id[100005][55], www[maxn], bf[maxn], val[maxn], num, ans;
int dfn[maxn], low[maxn], idx, st[maxn], us[maxn], tot, tp, bel[maxn], f[maxn], d[maxn];
Edge edge[maxn];
char s[55];
vector <int> dag[maxn];
queue <int> Q;
bitset <maxn> vis;
inline void Add(int u, int v) {
edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
}
void Tarjan(int u) {
int e, v, r;
dfn[u] = low[u] = ++idx, vis[u] = 1, st[++tp] = u;
for (e = first[u]; ~e; e = edge[e].next)
if (!dfn[v = edge[e].to]) Tarjan(v), low[u] = min(low[u], low[v]);
else if (vis[v]) low[u] = min(low[u], dfn[v]);
if (low[u] == dfn[u]) {
++num;
do {
vis[v = st[tp--]] = 0;
if (www[v] && us[bf[v]] != num) us[bf[v]] = num, ++val[num];
bel[v] = num;
} while (v ^ u);
}
}
int main() {
int i, j, u, v, e;
memset(first, -1, sizeof(first));
scanf("%d%d%d", &n, &m, &dd);
for (i = 1; i <= n; ++i)
for (j = 1; j <= dd; ++j) id[i][j] = ++tot, bf[tot] = i;
for (i = 1; i <= m; ++i) {
scanf("%d%d", &u, &v);
for (j = 1; j <= dd; ++j) Add(id[u][j], id[v][j % dd + 1]);
}
for (i = 1; i <= n; ++i) {
scanf(" %s", s + 1);
for (j = 1; j <= dd; ++j) www[id[i][j]] = s[j] == '1';
}
for (i = 1; i <= tot; ++i) if (!dfn[i]) Tarjan(i);
for (i = 1; i <= tot; ++i)
for (e = first[i]; ~e; e = edge[e].next)
if (bel[i] != bel[edge[e].to]) dag[bel[i]].push_back(bel[edge[e].to]), ++d[bel[edge[e].to]];
memset(f, -63, sizeof(f)), f[bel[1]] = val[bel[1]];
for (i = 1; i <= num; ++i) if (!d[i]) Q.push(i);
while (!Q.empty()) {
u = Q.front(), Q.pop(), ans = max(ans, f[u]);
for (int t : dag[u]) {
f[t] = max(f[t], f[u] + val[t]);
if (!--d[t]) Q.push(t);
}
}
printf("%d\n", ans);
return 0;
}
T4
\(floyed\) 判环法,一个人 \(a\) 一次 \(1\) 步,另一个人 \(b\) 一次 \(2\) 步。
设 \(a\) 走了 \(t+v\) 步,\(b\) 走了 \(2t+2v\) 步。
不难发现 \(c|(t+v)\),而 \(a\) 是一次 \(1\) 步,所以 \(a\) 一定没有走完一个环,所以只要再次走 \(t\) 步就可以刚好到了终点。
其它的点也是一样。
总步骤 \(\le 3(c+t)\)。
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
char s[233];
inline int Read() {
int x, i;
scanf("%d", &x);
for (i = 1; i <= x; ++i) scanf(" %s", s);
return x;
}
int main() {
while (true) {
printf("next 0\n"), fflush(stdout), Read();
printf("next 0 1\n"), fflush(stdout);
if (Read() == 2) break;
}
while (true) {
printf("next 0 1 2 3 4 5 6 7 8 9\n"), fflush(stdout);
if (Read() == 1) break;
}
printf("done"), fflush(stdout);
return 0;
}
T5
不难发现每次加的一些 \(0\) 只要保留第一个就行了。
一操作很好做,直接扔掉前面的信息即可。
考虑二三操作,可以想到用单调队列来维护。
假设 \(x<y\),那么一次三操作 \(v_x\) 变得小于 \(v_y\) 的条件显然是
\(\frac{v_x-v_y}{x-y}>-s\),所以维护一个 \((v_x,x)\) 的斜率单调递增的下凸壳即可。
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(3e5 + 5);
int n, m;
ll Q[maxn], val[maxn], mov, hd, tl, ed, tagb, tags;
inline ll Calc(int x) { return val[x] + tagb + tags * (Q[x] + mov - 1); }
int main() {
ll op, k, b, s;
scanf("%d%d", &n, &m);
Q[hd = tl = val[0] = 0] = 1, ed = n;
while (m--) {
scanf("%lld", &op);
if (op <= 2) scanf("%lld", &k);
else scanf("%lld%lld", &b, &s);
if (op == 1) mov += k, ed += k, Q[hd = tl = 0] = 1 - mov, val[hd] = tagb = tags = 0;
else if (op == 2) {
while (hd < tl && 1.0 * (Calc(tl) - Calc(tl - 1)) / (Q[tl] - Q[tl - 1]) >= -1.0 * Calc(tl) / (ed + 1 - Q[tl] - mov)) --tl;
Q[++tl] = ed + 1 - mov, val[tl] = -tagb - tags * ed, ed += k;
}
else tagb += b, tags += s;
while (hd < tl && val[tl] + tags * (Q[tl] - Q[tl - 1]) - val[tl - 1] >= 0) --tl;
printf("%lld %lld\n", Q[tl] + mov, Calc(tl));
}
return 0;
}
T6
首先可以以最后烧掉的点为根,变成有根树。
考虑一次 \(up~u\) 操作的影响,设原来的根为 \(rt\),那么会使得 \((u,rt)\) 这条链的顺序变成 \(rt\) 烧到 \(u\) 并且是最后烧的链,其它点相对顺序不变。
现在问题是怎么统计每个点在它之前的点的个数。
可以把 \(up\) 操作看成是一种区间(链)覆盖一个新的最大编号,然后换根。
那么一个点的排名就变成了小于等于它的编号的点个数减去它祖先编号和它相同的点的个数。
这种染色问题可以用 \(LCT\) 维护,\(up\) 就直接 \(access+makeroot\),同一个编号的点一定在一棵 \(Splay\) 中,直接覆盖即可。
外加一个树状数组维护小于等于它的编号的点个数。
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn(4e5 + 5);
int n, q, mx, cnt_col, d[maxn], cnt[maxn];
vector <int> edge[maxn];
int fa[maxn], ch[2][maxn], rev[maxn], col[maxn], sta[maxn], tp, size[maxn];
priority_queue <int> Q;
inline void AddEdge(int u, int v) { edge[u].push_back(v), edge[v].push_back(u), ++d[u], ++d[v]; }
inline void Add(int x, int v) { for (; x <= mx; x += x & -x) cnt[x] += v; }
inline int Query(int x) {
int ret = 0;
for (; x; x ^= x & -x) ret += cnt[x];
return ret;
}
inline int Isroot(int x) { return (ch[0][fa[x]] ^ x) && (ch[1][fa[x]] ^ x); }
inline int Son(int x) { return ch[1][fa[x]] == x; }
inline void Update(int x) { size[x] = size[ch[0][x]] + size[ch[1][x]] + 1; }
inline void Reverse(int x) { if (x) swap(ch[0][x], ch[1][x]), rev[x] ^= 1; }
inline void Cover(int x, int v) { if (x) col[x] = v; }
inline void Pushdown(int x) {
if (rev[x]) rev[x] ^= 1, Reverse(ch[0][x]), Reverse(ch[1][x]);
Cover(ch[0][x], col[x]), Cover(ch[1][x], col[x]);
}
inline void Rotate(int x) {
int y = fa[x], z = fa[y], c = Son(x);
if (!Isroot(y)) ch[Son(y)][z] = x;
fa[x] = z, ch[c][y] = ch[c ^ 1][x], fa[ch[c][y]] = y;
ch[c ^ 1][x] = y, fa[y] = x, Update(y);
}
inline void Splay(int x) {
int y;
sta[tp = 1] = x;
for (y = x; !Isroot(y); y = fa[y]) sta[++tp] = fa[y];
while (tp) Pushdown(sta[tp--]);
for (y = fa[x]; !Isroot(x); Rotate(x), y = fa[x])
if (!Isroot(y)) (Son(x) ^ Son(y)) ? Rotate(x) : Rotate(y);
Update(x);
}
inline void Access(int x) {
int y;
for (y = 0; x; y = x, x = fa[x]) {
Splay(x), Add(col[x], -size[ch[0][x]] - 1);
ch[1][x] = y, Update(x);
}
}
inline void Makeroot(int x) {
Access(x), Splay(x), Reverse(x), Cover(x, ++cnt_col), Add(col[x], size[x]);
}
inline int When(int x) { return Splay(x), Query(col[x]) - size[ch[0][x]]; }
int main() {
int i, u, v;
char op[233];
scanf("%d%d", &n, &q), mx = n + q;
for (i = 1; i < n; ++i) scanf("%d%d", &u, &v), AddEdge(u, v);
for (i = 1; i <= n; ++i) if (d[i] == 1) Q.push(-i);
while (!Q.empty()) {
u = -Q.top(), Q.pop(), --d[u], Add(col[u] = ++cnt_col, 1);
for (int to : edge[u]) if (--d[to] == 1) Q.push(-to);
}
for (u = 1; u <= n; ++u)
for (int to : edge[u]) if (col[u] > col[to]) fa[to] = u;
while (q--) {
scanf(" %s%d", op + 1, &u);
if (op[1] == 'u') Makeroot(u);
else if (op[1] == 'w') printf("%d\n", When(u));
else scanf("%d", &v), printf("%d\n", When(u) < When(v) ? u : v);
}
return 0;
}
Codeforces Round #545 (Div. 1) 简要题解的更多相关文章
- Codeforces Round #557 (Div. 1) 简要题解
Codeforces Round #557 (Div. 1) 简要题解 codeforces A. Hide and Seek 枚举起始位置\(a\),如果\(a\)未在序列中出现,则对答案有\(2\ ...
- Codeforces Round #483 (Div. 1) 简要题解
来自FallDream的博客,未经允许,请勿转载,谢谢. 为了证明一下我又来更新了,写一篇简要的题解吧. 这场比赛好像有点神奇,E题莫名是道原题,导致有很多选手直接过掉了(Claris 表演24s过题 ...
- Codeforces Round #498 (Div. 3) 简要题解
[比赛链接] https://codeforces.com/contest/1006 [题解] Problem A. Adjacent Replacements [算法] 将序列中的所有 ...
- Codeforces Round #535(div 3) 简要题解
Problem A. Two distinct points [题解] 显然 , 当l1不等于r2时 , (l1 , r2)是一组解 否则 , (l1 , l2)是一组合法的解 时间复杂度 : O(1 ...
- [题解][Codeforces]Codeforces Round #602 (Div. 1) 简要题解
orz djq_cpp lgm A 题意 给定一个分别含有 \(\frac n2\) 个左括号和右括号的括号序列 每次可以将序列的一个区间翻转 求一个不超过 \(n\) 次的操作方案,使得操作完之后的 ...
- Codeforces Round #398 (div.2)简要题解
这场cf时间特别好,周六下午,于是就打了打(谁叫我永远1800上不去div1) 比以前div2的题目更均衡了,没有太简单和太难的...好像B题难度高了很多,然后卡了很多人. 然后我最后做了四题,E题感 ...
- Codeforces Round #588 (Div. 1) 简要题解
1. 1229A Marcin and Training Camp 大意: 给定$n$个对$(a_i,b_i)$, 要求选出一个集合, 使得不存在一个元素好于集合中其他所有元素. 若$a_i$的二进制 ...
- Codeforces Round #576 (Div. 1) 简要题解 (CDEF)
1198 C Matching vs Independent Set 大意: 给定$3n$个点的无向图, 求构造$n$条边的匹配, 或$n$个点的独立集. 假设已经构造出$x$条边的匹配, 那么剩余$ ...
- Codeforces Round #539Ȟȟȡ (Div. 1) 简要题解
Codeforces Round #539 (Div. 1) A. Sasha and a Bit of Relax description 给一个序列\(a_i\),求有多少长度为偶数的区间\([l ...
随机推荐
- AndroidStudio配置LitePal
配置,许多书上还有教程都忽略了将LitePal下载下来和拷贝的过程,这里写一个详细的课程 首先,前往GitHub,下载LitePal的包. 然后解压,会看到这个 进入download 自己选个版本,然 ...
- 解决修改css或js文件,浏览器缓存更新问题。
在搜索引擎中搜索关键字.htaccess 缓存,你可以搜索到很多关于设置网站文件缓存的教程,通过设置可以将css.js等不太经常更新的文件缓存在浏览器端,这样访客每次访问你的网站的时候,浏览器就可以从 ...
- mysql 常用操作命令
mysql官网指南:http://dev.mysql.com/doc/refman/5.1/zh/sql-syntax.html 1.导出整个数据库mysqldump -u 用户名 -p --defa ...
- Spark集群之Spark history server额外配置
Note: driver在SparkContext使用stop()方法后才将完整的信息提交到指定的目录,如果不使用stop()方法,即使在指定目录中产生该应用程序的目录,history server ...
- CentOS6.7-64bit编译hadoop2.6.4
1.下载maven(apache-maven-3.3.3-bin.tar.gz) http://archive.apache.org/dist/maven/maven-3/3.3.3/binaries ...
- spring-boot-starter-actuator
首先在pom中添加依赖 pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xml ...
- Windows下的Jdk 1.7*安装并配置(图文详解)
不多说,直接上干货! 很多人很少去想,为什么在windows下,安装完Jdk的安装包之后,还需要去配置环境变量,只是知道要这么去做,没有想过为什么要去这么做? 答:由于java是平台无关的 ,安装jd ...
- 全网最详细的Hadoop HA集群启动后,两个namenode都是standby的解决办法(图文详解)
不多说,直接上干货! 解决办法 因为,如下,我的Hadoop HA集群. 1.首先在hdfs-site.xml中添加下面的参数,该参数的值默认为false: <property> < ...
- JavaScript -- Document-ElementsByName
-----047-Document-ElementsByName.html----- <!DOCTYPE html> <html> <head> <meta ...
- Java设计模式之工厂方法模式(转) 实现是抽象工厂?
Java设计模式之工厂方法模式 责任编辑:覃里作者:Java研究组织 2009-02-25 来源:IT168网站 文本Tag: 设计模式 Java [IT168 技术文章] ...