题意

题目链接

Sol

开始想的dp,发现根本不能转移(貌似只能做链)

根据期望的线性性,其中\(ans = \sum_{1 * f(x)}\)

\(f(x)\)表示删除\(x\)节点的概率,显然\(x\)节点要被删除,那么它的祖先都不能被删除,因此概率为\(\frac{1}{deep[x]}\)

#include<bits/stdc++.h>
#define Pair pair<int, int>
#define MP(x, y) make_pair(x, y)
#define fi first
#define se second
//#define int long long
#define LL long long
#define ull unsigned long long
#define Fin(x) {freopen(#x".in","r",stdin);}
#define Fout(x) {freopen(#x".out","w",stdout);}
using namespace std;
const int MAXN = 1e6 + 10, mod = 1e9 + 7, INF = 1e9 + 10;
const double eps = 1e-9;
template <typename A, typename B> inline bool chmin(A &a, B b){if(a > b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline bool chmax(A &a, B b){if(a < b) {a = b; return 1;} return 0;}
template <typename A, typename B> inline LL add(A x, B y) {if(x + y < 0) return x + y + mod; return x + y >= mod ? x + y - mod : x + y;}
template <typename A, typename B> inline void add2(A &x, B y) {if(x + y < 0) x = x + y + mod; else x = (x + y >= mod ? x + y - mod : x + y);}
template <typename A, typename B> inline LL mul(A x, B y) {return 1ll * x * y % mod;}
template <typename A, typename B> inline void mul2(A &x, B y) {x = (1ll * x * y % mod + mod) % mod;}
template <typename A> inline void debug(A a){cout << a << '\n';}
template <typename A> inline LL sqr(A x){return 1ll * x * x;}
inline int read() {
char c = getchar(); int x = 0, f = 1;
while(c < '0' || c > '9') {if(c == '-') f = -1; c = getchar();}
while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int N, dep[MAXN];
vector<int> v[MAXN];
void dfs(int x, int fa) {
dep[x] = dep[fa] + 1;
for(int i = 0; i < v[x].size(); i++) {
int to = v[x][i];
if(to == fa) continue;
dfs(to, x);
}
}
signed main() {
N = read();
for(int i = 1; i <= N - 1; i++) {
int x = read(), y = read();
v[x].push_back(y);
v[y].push_back(x);
}
dfs(1, 0);
double ans = 0;
for(int i = 1; i <= N; i++) ans += 1.0 / dep[i];
printf("%.12lf", ans);
return 0;
}

cf280C. Game on Tree(期望线性性)的更多相关文章

  1. 2019牛客暑期多校训练营(第八场)B-Beauty Values(期望线性性)

    >传送门< 题意:思路:期望的线性性(可加性),比赛的时候写的代码超级无敌长,不过值得欣慰的是一发AC了,官方的题解写的还不错~ 我们可以把每种数字对答案的贡献分开来计算,即枚举每个数字, ...

  2. CF280C Game on Tree 期望

    期望多少次操作,我们可以看做是染黑了多少节点 那么,我们可以用期望的线性性质,求出每个节点被染黑的概率之和(权值为$1$) 一个节点$u$被染黑仅跟祖先有关 我们把$u$到祖先的链抽出来 只要选取链上 ...

  3. Nowcoder156F 托米的游戏/CF280C Game on tree 期望

    传送门 题意:给出一棵树,在每一轮中,随机选择一个点将它与它的子树割掉,最后割掉所有点时游戏结束,问游戏期望进行多少轮.$N \leq 10^5$ 和的期望等于期望的和,我们考虑每一个点对最后答案的贡 ...

  4. bzoj1415[NOI2005]聪聪和可可-期望的线性性

    这道题之前我写过一个巨逗比的写法(传送门:http://www.cnblogs.com/liu-runda/p/6220381.html) 当时的原因是这道题可以抽象出和"绿豆蛙的归宿&qu ...

  5. 浅谈期望的线性性(可加性)【CodeForces280c】【bzoj3036】【bzoj3143】

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=63399955 向大(hei)佬(e)势力学(di ...

  6. CF280C Game on Tree 概率与期望

    利用期望的线性性,即 $E(a+b)=E(a)+E(b)$. 对于所有点分别求一下期望然后累加即可. code: #include <bits/stdc++.h> #define N 10 ...

  7. CF280C Game on tree(期望dp)

    这道题算是真正意义上人生第一道期望的题? 题目大意: 给定一个n个点的,以1号点为根的树,每一次可以将一个点和它的子树全部染黑,求染黑所有点的期望 QwQ说实话,我对期望这种东西,一点也不理解... ...

  8. 【NOIP2019模拟2019.9.4】B(期望的线性性)

    题目描述: \(1<=n,ai<=5*10^5\) 题解: 我是弱智我不会期望线性. 设\(E(a[i])\)表示第i个期望被减的个数. \(E(a[1])=a[1]\) 不难发现\(E( ...

  9. CF280C Game on Tree

    题目链接 : CF280C Game on Tree 题意 : 给定一棵n个节点的树T 根为一(我咕的翻译漏掉了...) 每次随机选择一个未被删除的点 并将它的子树删除 求删整棵树的期望步数 n ∈ ...

随机推荐

  1. 【Spark算子】:reduceByKey、groupByKey和combineByKey

    在spark中,reduceByKey.groupByKey和combineByKey这三种算子用的较多,结合使用过程中的体会简单总结: 我的代码实践:https://github.com/wwcom ...

  2. captcha ~ 生成验证码图片

    验证码在我们的世界中可以保护我们的信息安全的一个保障之一 这就是生成验证码的代码     # 导报 from captcha.image import ImageCaptcha #验证码的包 from ...

  3. 设置iptables NAT出外网

    有时候云上部署环境,不能动态自设路由,没有公网ip地址的服务器,只能通过NAT的方式出外网,下面就记录一下设置过程. 当前状态 服务器A只有一个内网IP,不能上外网,内网IP与服务器B内网相通:服务器 ...

  4. 【xsy2274】 平均值 线段树

    题目大意:给你一个长度为$n$的序列$a$,请你求: $\sum\limits_{l=1}^{n}\sum\limits_{r=l}^{n}\dfrac{mex(a_l,a_{l+1},...,a_r ...

  5. odoo 开发基础 -- 视图之widget

    Odoo 中的widget many2many_tags one2many_list selection progressbar selection statusbar handle monetary ...

  6. 【原创】SQL Server 性能调优读书笔记

    CPU 100%: 有时可能是硬盘性能不足,或者内存容量不够,让CPU一直忙于I/O. 导致性能问题的一些因素: 用户习惯:在运行尖峰时刻做一些不必做但消耗资源的事情,如之行数据库完整备份,如在服务器 ...

  7. (转)X-Frame-Options响应头缺失漏洞

    原文:https://blog.csdn.net/ljl890705/article/details/78071601 x-frame-options响应头缺失漏洞. 故名思意,就是返回的响应头信息中 ...

  8. c++中char类型字符串拼接以及int类型转换为char类型 && 创建文件夹

    如下所示: #include <iostream> #include <windows.h> #include <cstring> using namespace ...

  9. tensorflow进阶篇-4(损失函数3)

    Softmax交叉熵损失函数(Softmax cross-entropy loss)是作用于非归一化的输出结果只针对单个目标分类的计算损失.通过softmax函数将输出结果转化成概率分布,然后计算真值 ...

  10. Google Optimization Tools实现员工排班计划Scheduling【Python版】

    上一篇介绍了<使用.Net Core与Google Optimization Tools实现员工排班计划Scheduling>,这次将Google官方文档python实现的版本的完整源码献 ...